We consider the inverse problem of determining a crack submitted to a non linear impedance law. Identifiability and local Lipschitz stability results are proved for both the crack and the impedance.
@article{M2AN_2003__37_2_241_0, author = {Jaoua, Mohamed and Nicaise, Serge and Paquet, Luc}, title = {Identification of cracks with non linear impedances}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {241-257}, doi = {10.1051/m2an:2003033}, mrnumber = {1991199}, zbl = {1029.35221}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_2_241_0} }
Jaoua, Mohamed; Nicaise, Serge; Paquet, Luc. Identification of cracks with non linear impedances. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 241-257. doi : 10.1051/m2an:2003033. http://gdmltest.u-ga.fr/item/M2AN_2003__37_2_241_0/
[1] Stability for the crack determination problem, in Inverse problems in Mathematical Physics, L. Päıvaärinta and E. Somersalo Eds., Springer-Verlag, Berlin (1993) 1-8. | Zbl 0802.35152
,[2] Determining linear cracks by boundary measurements: Lipschitz stability. SIAM J. Math. Anal. 27 (1996) 361-375. | Zbl 0855.35124
, and ,[3] Unique determination of multiple cracks by two measurements. SIAM J. Control Optim. 34 (1996) 913-921. | Zbl 0864.35115
and ,[4] Determining 2-dimensional cracks in 3-dimensional bodies: uniqueness and stability. Indiana Univ. Math. J. 46 (1997) 1-82. | Zbl 0879.35040
and ,[5] Identification of planar cracks by overdetermined boundary data: inversion formulae. Inverse Problems 12 (1996) 553-563. | Zbl 0858.35131
and ,[6] On the inverse emerging plane crack problem. Math. Methods Appl. Sci. 21 (1998) 895-907. | Zbl 0916.35129
, and ,[7] A semi-explicit algorithm for the reconstruction of 3D planar cracks. Inverse Problems 15 (1999) 67-78. | Zbl 0921.35188 | Zbl 0882.35128
, and ,[8] Identification problems in potential theory. Arch. Rational Mech. Anal. 101 (1988) 143-160. | Zbl 0659.35102
and ,[9] Boundary Integral Equation Methods for Solids and Fluids. Wiley, New York (1995). | Zbl 0920.73001
,[10] A uniqueness result concerning the identification of a collection of cracks from finitely many electrostatic boundary measurements. SIAM J. Math. Anal. 23 (1992) 950-958. | Zbl 0754.73077
and ,[11] Elliptic boundary value problems in corner domains. Smoothness and asymptotics of solutions. Springer Verlag, Berlin, Lecture Notes in Math. 1341 (1988). | MR 961439 | Zbl 0668.35001
,[12] Probabilité et potentiel. Hermann (1975). | MR 488194 | Zbl 0323.60039
and ,[13] Sur une interprétation mathématique de l'intégrale de Rice en théorie de la rupture fragile. Math. Methods Appl. Sci. 3 (1981) 70-87. | Zbl 0493.73087
and ,[14] Étude de l'identifiabilité et de la stabilité d'une fissure présentant une résistivité de contact. DEA de Mathématiques Appliquées, ENIT, Tunis (1997).
,[15] Determining cracks by boundary measurements. Indiana Univ. Math. J. 38 (1989) 527-556. | Zbl 0697.35165
and ,[16] Elliptic problems in nonsmooth domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060
,[17] On the coefficients in the asymptotics of solutions of elliptic boundary value problems in domains with conical points. Amer. Math. Soc. Transl. Ser. 2 123 (1984) 57-88. | Zbl 0554.35036
and ,[18] Quelques résultats sur le contrôle par un domaine géométrique. Preprint, Université de Paris VI (1974). | MR 437935
and ,[19] Boundary integral equations for mixed boundary value problems, screen and transmission problems in . Habilitationsschrift, TH Darmstadt, Germany (1984).
,[20] Boundary integral equations for screen problems in . Integral Equations Operator Theory 10 (1987) 236-257. | Zbl 0653.35016
,[21] Equations of Mathematical Physics. Marcel Dekker, New York (1971). | MR 268497 | Zbl 0207.09101
,