In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson's equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.
@article{M2AN_2003__37_2_209_0, author = {Becker, Roland and Hansbo, Peter and Stenberg, Rolf}, title = {A finite element method for domain decomposition with non-matching grids}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {209-225}, doi = {10.1051/m2an:2003023}, mrnumber = {1991197}, zbl = {1047.65099}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_2_209_0} }
Becker, Roland; Hansbo, Peter; Stenberg, Rolf. A finite element method for domain decomposition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 209-225. doi : 10.1051/m2an:2003023. http://gdmltest.u-ga.fr/item/M2AN_2003__37_2_209_0/
[1] Approximation of Elliptic Boundary-Value Problem. Wiley (1972). | MR 478662 | Zbl 0248.65063
,[2] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl 0482.65060
,[3] Stabilization of Galerkin methods and applications to domain decomposition, in Future Tendencies in Computer Science, Control and Applied Mathematics, A. Bensoussan and J.-P. Verjus Eds., Springer (1992) 345-355.
, and ,[4] Boundary Lagrange multipliers in finite element methods: error analysis in natural norms. Numer. Math. 62 (1992) 1-15. | Zbl 0765.65102
and ,[5] Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343-366. | Zbl 0614.65116
and ,[6] Discontinuous Galerkin methods for convection-diffusion problems with arbitrary Péclet number, in Numerical Mathematics and Advanced Applications: Proceedings of the 3rd European Conference, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific (2000) 100-109. | Zbl 0968.65084
and ,[7] A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264. | Zbl 0868.65076
and ,[8] A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and Their Application, H. Brezis and J.L. Lions Eds., Pitman (1989). | Zbl 0797.65094
, and ,[9] Stabilization techniques for domain decomposition methods with non-matching grids, IAN-CNR Report N. 1037, Istituto di Analisi Numerica Pavia.
, , and ,[10] On weakly imposed boundary conditions for second order problems, in Proceedings of the Ninth Int. Conf. Finite Elements in Fluids, M. Morandi Cecchi et al. Eds., Venice (1995) 327-336.
and ,[11] Space-time finite element methods for second order problems: an algorithmic approach. Acta Polytech. Scand. Math. Comput. Manage. Eng. Ser. 79 (1996). | MR 1422305 | Zbl 0861.65083
,[12] Nitsche mortar finite element method for transmission problems with singularities. SFB393-Preprint 2001-10, Technische Universität Chemnitz (2001). | MR 1975269 | Zbl 1027.65149
and ,[13] Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. | Zbl 1002.65124
and ,[14] Adaptive finite element methods in computational mechanics. Comput. Methods Appl. Mech. Engrg. 101 (1992) 143-181. | Zbl 0778.73071
and ,[15] Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64 (1995) 1367-1396. | Zbl 0849.65087
and ,[16] On the Schwarz alternating method III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan, R. Glowinski, J. Periaux and O.B. Widlund Eds., SIAM (1989) 202-223. | Zbl 0704.65090
,[17] Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl 0229.65079
,[18] On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. | Zbl 0856.65130
,[19] Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998). | MR 1839048
,[20] Galerkin Finite Element Methods for Parabolic Problems. Springer (1997). | MR 1479170 | Zbl 0884.65097
,[21] A residual based error estimator for mortar finite element discretizations. Numer. Math. 84 (1999) 143-171. | Zbl 0962.65090
,