Semi-smooth Newton methods are analyzed for a class of variational inequalities in infinite dimensions. It is shown that they are equivalent to certain active set strategies. Global and local super-linear convergence are proved. To overcome the phenomenon of finite speed of propagation of discretized problems a penalty version is used as the basis for a continuation procedure to speed up convergence. The choice of the penalty parameter can be made on the basis of an estimate for the penalized solutions. Unilateral as well as bilateral problems are considered.
@article{M2AN_2003__37_1_41_0, author = {Ito, Kazufumi and Kunisch, Karl}, title = {Semi-smooth Newton methods for variational inequalities of the first kind}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {41-62}, doi = {10.1051/m2an:2003021}, zbl = {1027.49007}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_1_41_0} }
Ito, Kazufumi; Kunisch, Karl. Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 41-62. doi : 10.1051/m2an:2003021. http://gdmltest.u-ga.fr/item/M2AN_2003__37_1_41_0/
[1] Constrained Optimization and Lagrange Mulitpliers. Academic Press, New York (1982). | MR 690767
,[2] A comparison of a Moreau-Yosida based active strategy and interior point methods for constrained optimal control problems. SIAM J. Optim. 11 (2000) 495-521. | Zbl 1001.49034
, , and ,[3] Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | Zbl 0937.49017
, and ,[4] Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7 (1997) 871-887. | Zbl 0912.65052
,[5] Numerical Methods for Nonlinear Variational Problems. Springer Verlag, New York (1984). | MR 737005 | Zbl 0536.65054
,[6] Analyse Numerique des Inequations Variationnelles. Vol. 1, Dunod, Paris (1976). | Zbl 0358.65091
, and ,[7] The primal-dual active set strategy as semi-smooth Newton method. SIAM J. Optim. (to appear). | Zbl 1080.90074
, and ,[8] Multigrid algorithms for variational inequalities. SIAM J. Numer. Anal. 24 (1987) 1046-1065. | Zbl 0628.65046
,[9] Adaptive multigrid methods for obstacle problems. SIAM J. Numer. Anal. 31 (1994) 301-323. | Zbl 0806.65064
and ,[10] Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. 41 (2000) 573-589. | Zbl 0971.49014
and ,[11] Optimal control of elliptic variational inequalities. Appl. Math. Optim. 41 (2000) 343-364. | Zbl 0960.49003
and ,[12] An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980). | MR 567696 | Zbl 0457.35001
and ,[13] Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). | Zbl 0655.35002
,[14] Semi-smooth Newton methods for operator equations in function space. SIAM J. Optim. (to appear). | Zbl 1033.49039
,