The main goal of this article is to establish a priori and a posteriori error estimates for the numerical approximation of some non linear elliptic problems arising in glaciology. The stationary motion of a glacier is given by a non-newtonian fluid flow model which becomes, in a first two-dimensional approximation, the so-called infinite parallel sided slab model. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1. Numerical results show that the theoretical results we have obtained are almost optimal.
@article{M2AN_2003__37_1_175_0, author = {Glowinski, Roland and Rappaz, Jacques}, title = {Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {175-186}, doi = {10.1051/m2an:2003012}, mrnumber = {1972657}, zbl = {1046.76002}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_1_175_0} }
Glowinski, Roland; Rappaz, Jacques. Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 175-186. doi : 10.1051/m2an:2003012. http://gdmltest.u-ga.fr/item/M2AN_2003__37_1_175_0/
[1] Estimateurs a posteriori d'erreurs pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 31-48. | Numdam | Zbl 0712.76068
and .[2] Finite element approximation of degenerate quasi-linear elliptic and parabolic problems. Pitman Res. Notes Math. Ser. 303 (1994) 1-16. In Numerical Analysis 1993. | Zbl 0798.65092
and ,[3] Velocity and stress fields in grounded glacier: a simple algorithm for including deviator stress gradients. J. Glaciol. 41 (1995) 333-344.
,[4] The finite element method for elliptic problems. North-Holland, Stud. Math. Appl. 4 (1978). | MR 520174 | Zbl 0383.65058
,[5] A strongly non linear problem arising in glaciology. ESAIM: M2AN 33 (1999) 395-406. | Numdam | Zbl 0946.65115
and ,[6] Sur l'approximation par éléments finis d'ordre un, et la résolution par pénalisation-dualité, d'une classe de problèmes de Dirichlet non linéaires. Anal. Numér. 2 (1975) 41-76. | Numdam | Zbl 0368.65053
and ,[7] The blocking of an inhomogeneous Bingham fluid. Applications to landslides. ESAIM: M2AN 36 (2002) 1013-1026. | Numdam | Zbl 1057.76004
, , and ,[8] Quasi-norm local error estimators for -Laplacian. SIAM J. Numer. Anal. 39 (2001) 100-127. | Zbl 1001.65119
and .[9] Résolution numérique d'un problème à frontière libre issu de la glaciologie. Diploma thesis, Department of Mathematics, EPFL, Lausanne, Switzerland (2001).
,