Let be an odd function of a class such that and increases on . We approximate the positive solution of on with homogeneous Dirichlet boundary conditions by the solution of on with adequate non-homogeneous Dirichlet conditions. We show that the error tends to zero exponentially fast, in the uniform norm.
@article{M2AN_2003__37_1_117_0, author = {Kolli, Messaoud and Schatzman, Michelle}, title = {Approximation of a semilinear elliptic problem in an unbounded domain}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {37}, year = {2003}, pages = {117-132}, doi = {10.1051/m2an:2003017}, mrnumber = {1972653}, zbl = {1137.35364}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2003__37_1_117_0} }
Kolli, Messaoud; Schatzman, Michelle. Approximation of a semilinear elliptic problem in an unbounded domain. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 37 (2003) pp. 117-132. doi : 10.1051/m2an:2003017. http://gdmltest.u-ga.fr/item/M2AN_2003__37_1_117_0/
[1] A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1084-1095.
and ,[2] Analyse fonctionnelle. Masson, Paris (1983). Théorie et applications [Theory and applications]. | MR 697382 | Zbl 0511.46001
,[3] Xinfu Chen, Generation and propagation of interfaces for reaction-diffusion equations. J. Differential Equations 96 (1992) 116-141. | Zbl 0765.35024
[4] Theory of ordinary differential equations. McGraw-Hill Book Company, Inc., New York, Toronto, London (1955). | MR 69338 | Zbl 0064.33002
and ,[5] Fife and L.A. Peletier, Saddle solutions of the bistable diffusion equation. Z. Angew. Math. Phys. 43 (1992) 984-998. | Zbl 0764.35048
[6] An approximation theory for boundary value problems on infinite intervals. Computing 24 (1980) 227-239. | Zbl 0441.65064
and ,[7] Development of interfaces in . Proc. Roy. Soc. Edinburgh Sect. A 116 (1990) 207-220. | Zbl 0725.35009
and ,[8] Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533-1589. | Zbl 0840.35010
and ,[9] Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. | Zbl 0367.65051
and ,[10] Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math. 45 (1992) 1097-1123. | Zbl 0801.35045
, and ,[11] Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR 1814364 | Zbl 1042.35002
and ,[12] Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comp. 48 (1987) 449-470. | Zbl 0627.65120
and ,[13] Exact boundary conditions at an artificial boundary for partial differential equations in cylinders. SIAM J. Math. Anal. 17 (1986) 322-341. | Zbl 0617.35052
and ,[14] Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature. J. Differential Geom. 38 (1993) 417-461. | Zbl 0784.53035
,[15] Steady state and periodic solution paths: their bifurcations and computations, in Numerical methods for bifurcation problems, Dortmund (1983). Birkhäuser, Basel (1984) 219-246. | Zbl 0579.65057
and ,[16] Asymptotic boundary conditions for ordinary differential equations. Ph.D. thesis, California Institute of Technology (1980).
,[17] A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math. Anal. 13 (1982) 484-513. | Zbl 0498.34007
,[18] On the stability of the saddle solution of Allen-Cahn's equation. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1241-1275. | Zbl 0852.35020
,