We describe both the classical lagrangian and the Eulerian methods for first order Hamilton-Jacobi equations of geometric optic type. We then explain the basic structure of the software and how new solvers/models can be added to it. A selection of numerical examples are presented.
@article{M2AN_2002__36_5_883_0, author = {Benamou, Jean-David and Hoch, Philippe}, title = {GO++ : a modular lagrangian/eulerian software for Hamilton Jacobi equations of geometric optics type}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {883-905}, doi = {10.1051/m2an:2002037}, mrnumber = {1955540}, zbl = {1023.78001}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_5_883_0} }
Benamou, Jean-David; Hoch, Philippe. GO++ : a modular lagrangian/eulerian software for Hamilton Jacobi equations of geometric optics type. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 883-905. doi : 10.1051/m2an:2002037. http://gdmltest.u-ga.fr/item/M2AN_2002__36_5_883_0/
[1] Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multi-valued travel-time field in the marmousi model. Geophysics 64 (1999) 230-239.
and ,[2] Mathematical methods of Classical Mechanics. Springer-Verlag (1978). | Zbl 0386.70001
,[3] Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag (1994). | Zbl 0819.35002
,[4] Big ray tracing: Multi-valued travel time field computation using viscosity solutions of the eikonal equation. J. Comput. Phys. 128 (1996) 463-474. | Zbl 0860.65052
,[5] Direct solution of multi-valued phase-space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999). | Zbl 0935.35032
,[6] GO++: A modular Lagrangian/Eulerian software for Hamilton-Jacobi equations of Geometric Optics type. INRIA Tech. Report RR.
and ,[7] A kinetic formulation for multi-branch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 169-190. | Numdam | Zbl 0893.35068
and ,[8] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl 0599.35024
and ,[9] Oscillatory integrals, Lagrange immersions and unfolding of singularities. Comm. Pure Appl. Math. 27 (1974) 207-281. | Zbl 0285.35010
,[10] Numerical resolution of the high frequency asymptotic expansion of the scalar wave equation. J. Comput. Phys. 120 (1995) 145-155. | Zbl 0836.65099
, and ,[11] Multi-phase computation in geometrical optics. Tech report, Nada KTH (1995). | MR 1430373 | Zbl 0947.78001
and ,[12] The theory of Legendrian unfoldings and first order differential equations. Proc. Roy. Soc. Edinburgh Sect. A 123 (1993) 517-532. | Zbl 0786.35033
,[13] Two dimensional multi-valued traveltime and amplitude maps by uniform sampling of a ray field. Geophys. J. Int 125 (1996) 584-598.
, and ,[14] S. Ruuth and S.J. Osher, A fixed grid method for capturing the motion of self-intersecting interfaces and related PDEs. Preprint (1999).
[15] High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 83 (1989) 32-78. | Zbl 0674.65061
and ,[16] A new eulerian method for the computation of propagating short acoustic and electromagnetic pulses. J. Comput. Phys. 157 (2000) 683-706. | Zbl 1043.78556
, and ,[17] A slowness matching algorithm for multiple traveltimes. TRIP report (1996).
,[18] Traveltime and amplitude estimation using wavefront construction. Geophysics 58 (1993) 1157-1166.
, and ,[19] Lecture on the Calculus of Variation and Optimal Control Theory. Saunders, Philadelphia (1969). | MR 259704 | Zbl 0177.37801
,