In this work, we analyze hierarchic -finite element discretizations of the full, three-dimensional plate problem. Based on two-scale asymptotic expansion of the three-dimensional solution, we give specific mesh design principles for the -FEM which allow to resolve the three-dimensional boundary layer profiles at robust, exponential rate. We prove that, as the plate half-thickness tends to zero, the -discretization is consistent with the three-dimensional solution to any power of in the energy norm for the degree and with degrees of freedom.
@article{M2AN_2002__36_4_597_0, author = {Dauge, Monique and Schwab, Christoph}, title = {$hp$-FEM for three-dimensional elastic plates}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {597-630}, doi = {10.1051/m2an:2002027}, mrnumber = {1932306}, zbl = {1070.74046}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_4_597_0} }
Dauge, Monique; Schwab, Christoph. $hp$-FEM for three-dimensional elastic plates. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 597-630. doi : 10.1051/m2an:2002027. http://gdmltest.u-ga.fr/item/M2AN_2002__36_4_597_0/
[1] Hierarchic modelling of plates. Comput. & Structures 40 (1991) 419-430.
and ,[2] The problem of plate modelling - theoretical and computational results. Comput. Methods Appl. Mech. Engrg. 100 (1992) 249-273. | Zbl 0764.73040
and ,[3] Régularité Gevrey pour le problème de Dirichlet dans des domaines à singularités coniques. Comm. Partial Differential Equations 10 (1985) 391-432. | Zbl 0573.35024
, and ,[4] Mathematical Elasticity II: Theory of Plates. Elsevier Publ., Amsterdam (1997). | MR 1477663 | Zbl 0888.73001
,[5] Eigenmodes asymptotic in thin elastic plates. J. Math. Pures Appl. 78 (1999) 925-964. | Zbl 0966.74027
, , and ,[6] Asymptotics of arbitrary order for a thin elastic clamped plate. I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167-197. | Zbl 0856.73029
and ,[7] Asymptotics of arbitrary order for a thin elastic clamped plate. II: Analysis of the boundary layer terms. Asymptot. Anal. 16 (1998) 99-124. | Zbl 0941.74031
and ,[8] Edge layers in thin elastic plates. Comput. Methods Appl. Mech. Engrg. 157 (1998) 335-347. | Zbl 0961.74040
and ,[9] The influence of lateral boundary conditions on the asymptotics in thin elastic plates. SIAM J. Math. Anal. 31 (1999/00) 305-345 (electronic). | Zbl 0958.74034
, and ,[10] Développements asymptotiques dans les coques linéairement élastiques. Thèse, Université de Rennes 1 (2000).
,[11] Élasticité linéarisée tridimensionnelle pour une coque mince : résolution en série formelle en puissances de l'épaisseur. C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 415-420. | Zbl 0957.74027
,[12] Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory. J. Elasticity 14 (1984) 27-64. | Zbl 0536.73047
and ,[13] Regularity of the solutions for elliptic problems on nonsmooth domains in . I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 77-126. | Zbl 0874.35019
and ,[14] Regularity of the solutions for elliptic problems on nonsmooth domains in . II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997). | MR 1453280 | Zbl 0884.35022
and ,[15] Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313. | Zbl 0194.13405
,[16] FEM for reaction-diffusion equations. I. Robust exponential convergence. SIAM J. Numer. Anal. 35 (1998) 1520-1557 (electronic). | Zbl 0972.65093
and ,[17] On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math. 10 (1957) 271-290. | Zbl 0082.09402
and ,[18] Boundary layer resolution in hierarchical models of laminated composites. RAIRO Modél. Math. Anal. Numér. 28 (1994) 517-537. | Numdam | Zbl 0817.73038
,[19] - and -finite element methods. Theory and applications in solid and fluid mechanics. The Clarendon Press Oxford University Press, New York (1998). | MR 1695813 | Zbl 0910.73003
,[20] Boundary layer approximation in hierarchical beam and plate models. J. Elasticity 38 (1995) 1-40. | Zbl 0834.73040
and ,[21] Coupled model- and solution-adaptivity in the finite-element method. Comput. Methods Appl. Mech. Engrg. 150 (1997) 327-350. Symposium on Advances in Computational Mechanics, Vol. 2 (Austin, TX, 1997). | Zbl 0926.74127
and ,