We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.
@article{M2AN_2002__36_3_517_0, author = {Guermond, Jean Luc and Minev, Peter D.}, title = {Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {517-536}, doi = {10.1051/m2an:2002024}, mrnumber = {1918943}, zbl = {1137.65437}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_3_517_0} }
Guermond, Jean Luc; Minev, Peter D. Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 517-536. doi : 10.1051/m2an:2002024. http://gdmltest.u-ga.fr/item/M2AN_2002__36_3_517_0/
[1] A preconditioned semi-implicit method for magnetohydrodynamics equation. SIAM J. Sci. Comput. 21 (1999) 970-986. | Zbl 0964.76057
, and ,[2] Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, Springer Ser. Comput. Math. 15 (1991). | MR 1115205 | Zbl 0788.73002
and ,[3] Electromagnétisme en vue de la modélisation. SMAI/Springer-Verlag, Paris, Math. Appl. 14 (1993). See also Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press (1998). | MR 1488417
,[4] Analyse fonctionnelle. Masson, Paris (1991). | MR 697382 | Zbl 0511.46001
,[5] Approximation by finite element functions using local regularization. Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008
,[6] A coercive bilinear form for Maxwell's equations. J. Math. Anal. Appl. 157 (1991) 527-541. | Zbl 0738.35095
,[7]
and , time-dependent kinematic dynamos with stationary flows. Proc. Roy. Soc. London A425 (1989) 407-429.[8] Modeling of electromagnetic absorption/scattering problems using -adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). | Zbl 0994.78011
and ,[9] A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87 (2000) 83-111. | Zbl 0988.76050
,[10] Numerical simulations of 2D MHD problems using Lagrange finite elements (in preparation 2001).
, and ,[11] Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case (submitted 2002). | MR 2009590 | Zbl 1037.76034
and ,[12] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Springer Ser. Comput. Math. 5 (1986). | Zbl 0585.65077
and ,[13] Numerical simulations of cylindrical dynamos: scope and method. In 7th beer-Sheva Onternatal seminar, Vol. 162, pp. 282-292. AIAA Progress in Astronautics and aeronautic series, 1994.
,[14] Linear dynamo simulations with time dependent helical flows. Magnetohydrodynamics 31 (1995) 367-373. | Zbl 0875.76713
,[15] Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). | MR 247243 | Zbl 0165.10801
and ,[16] Magnetic Field Generation in Electrically Conducting Fluids. Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge (1978).
,[17] Analysis and numerical approximation of a stationary MHD flow problem with non-ideal boundary. SIAM J. Numer. Anal. 36 (1999) 1304-1332. | Zbl 0948.76091
and ,[18] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584
,[19] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl 0625.65107
,[20] Reconnexion of lines of force in rotating spheres and cylinders. Proc. Roy. Soc. 291 (1966) 60-72.
,[21] A finite element method for magnetohydrodynamics. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5867-5892. | Zbl 1044.76030
, and ,[22] A conservative stabilized finite element method for magnetohydrodynamics equations. Internat. J. Numer. Methods Fluids 29 (1999) 535-554. | Zbl 0938.76049
, , and ,[23] Error estimates for a mixed finite element approximation of the Stokes equation. RAIRO Anal. Numér. 18 (1984) 175-182. | Numdam | Zbl 0557.76037
,