This paper is devoted to the spectral analysis of a non elliptic operator , deriving from the study of superconducting micro-strip lines. Once a sufficient condition for the self-adjointness of operator has been derived, we determine its continuous spectrum. Then, we show that is unbounded from below and that it has a sequence of negative eigenvalues tending to . Using the Min-Max principle, a characterization of its positive eigenvalues is given. Thanks to this characterization, some conditions on the geometrical (large width) and physical (large dielectric permittivity in modulus) properties of the strip that ensure the existence of positive eigenvalues are derived. Finally, we analyze the asymptotic behavior of the eigenvalues of as the dielectric permittivity of the strip goes to .
@article{M2AN_2002__36_3_461_0, author = {Bonnet-Bendhia, Anne-Sophie and Ramdani, Karim}, title = {A non elliptic spectral problem related to the analysis of superconducting micro-strip lines}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {461-487}, doi = {10.1051/m2an:2002021}, mrnumber = {1918940}, zbl = {1070.35503}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_3_461_0} }
Bonnet-Bendhia, Anne-Sophie; Ramdani, Karim. A non elliptic spectral problem related to the analysis of superconducting micro-strip lines. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 461-487. doi : 10.1051/m2an:2002021. http://gdmltest.u-ga.fr/item/M2AN_2002__36_3_461_0/
[1] Mathematical Analysis of the Guided Modes of an Optical Fiber. SIAM J. Math. Anal. 21 (1990) 1487-1510. | Zbl 0729.35090
and ,[2] Guided Modes of Integrated Optical Guides. A Mathematical Study. IMA J. Appl. Math. 60 (1998) 225-261. | Zbl 0914.35130
, and ,[3] Analyse Spectrale et Singularités d'un Problème de Transmission non Coercif. C. R. Acad. Sci. Paris Sér. I 328 (1999) 717-720. | Zbl 0932.35153
, and ,[4] Mathematical Analysis of Elastic Surface Waves in Topographic Waveguides. Math. Models Methods Appl. Sci. 9 (1999) 755-798. | Zbl 0946.74034
, and ,[5] Mathematical Analysis of Conducting and Superconducting Transmission Lines. SIAM J. Appl. Math. 60 (2000) 2087-2113. | Zbl 1136.78315
and ,[6] Étude des modes guidés dans une ligne supraconductrice : le cas monodimensionnel1997).
,[7] Foundations for microwave engineering. Mc Graw-Hill Inc. (1992).
,[8] Mathematical Analysis of Electromagnetic Open Wave-guides. RAIRO Modèl. Math. Anal. Numér. 29 (1995) 505-575. | Numdam | Zbl 0834.35126
and ,[9] Modeling the Microwave Properties of Superconductors. IEEE Trans. Microwave Theory Tech. 43 (1995) 1053-1059.
and ,[10] Theory of Dielectric Optical Waveguide. Academic Press, New-York (1974).
,[11] Electromagnetics of Superconductors. IEEE Trans. Microwave Theory Tech. 44 (1991) 1545-1552.
and ,[12] Microwave and Optical Transmission. J. Wiley & Sons Ed. (1992).
,[13] Lignes Supraconductrices : Analyse Mathématique et Numérique. Ph.D. thesis, University of Paris VI, France (1999).
,[14] Methods of Modern Physics, Analysis of Operators. Academic Press (1980). | MR 751959
and ,