In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the norm for the sequence of discrete operators. These results, together with a general theory introduced by Brezzi, Rappaz and Raviart [8], allow an immediate proof of convergence for the finite element approximation of the time-harmonic Maxwell system.
@article{M2AN_2002__36_2_293_0, author = {Boffi, Daniele and Gastaldi, Lucia}, title = {Edge finite elements for the approximation of Maxwell resolvent operator}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {293-305}, doi = {10.1051/m2an:2002013}, mrnumber = {1906819}, zbl = {1042.65087}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_2_293_0} }
Boffi, Daniele; Gastaldi, Lucia. Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 293-305. doi : 10.1051/m2an:2002013. http://gdmltest.u-ga.fr/item/M2AN_2002__36_2_293_0/
[1] Vector potential in three-dimensional nonsmooth domains. Math Methods Appl. Sci. 21 (1998) 823-864. | Zbl 0914.35094
, , and ,[2] Finite element vibration analysis of fluid-solid systems without spurious modes. SIAM J. Numer. Anal. 32 (1995) 1280-1295. | Zbl 0833.73050
, , , and ,[3] Fortin operator and discrete compactness for edge elements. Numer. Math. 87 (2000) 229-246. | Zbl 0967.65106
,[4] A note on the de Rham complex and a discrete compactness property. Appl. Math. Lett. 14 (2001) 33-38. | Zbl 0983.65125
,[5] On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121-140. | Zbl 0938.65126
, and ,[6] Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36 (1998) 1264-1290. | Zbl 1025.78014
, , and ,[7] Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[8] Finite dimensional approximation of nonlinear problems. Part i: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1-25. | Zbl 0488.65021
, and ,[9] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems. SIAM J. Numer. Anal. 38 (2000) 580-607. | Zbl 1005.78012
, and ,[10] | Zbl 0955.65084
, , and , de Rham diagram for finite element spaces. Comput. Math. Appl. 39 (2000) 29-38.[11] Modeling of electromagnetic absorption/scattering problems using -adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103-124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997). | Zbl 0994.78011
and ,[12] On spectral approximation. I. The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97-112. | Numdam | Zbl 0393.65024
, and ,[13] P Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957-991. | Zbl 0910.35123
[14] Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Vol. 64, pages 509-521, 1987. | Zbl 0644.65087
,[15] On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci., Univ. Tokyo, Sect. I A 36 (1989) 479-490. | Zbl 0698.65067
,[16] A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243-261. | Zbl 0757.65126
,[17] Discrete compactness and the approximation of Maxwell’s equations in . Math. Comp. 70 (2001) 507-523. | Zbl 1035.65131
and ,[18] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl 0419.65069
,[19] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl 0625.65107
,[20] Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, 2001.
,[21] -adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331-344. | Zbl 0956.78013
and ,