This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.
@article{M2AN_2002__36_2_273_0, author = {Audounet, Jacques and Roquejoffre, Jean-Michel and Rouzaud, H\'el\`ene}, title = {Numerical simulation of a point-source initiated flame ball with heat losses}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {273-291}, doi = {10.1051/m2an:2002017}, mrnumber = {1906818}, zbl = {1025.80007}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_2_273_0} }
Audounet, Jacques; Roquejoffre, Jean-Michel; Rouzaud, Hélène. Numerical simulation of a point-source initiated flame ball with heat losses. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 273-291. doi : 10.1051/m2an:2002017. http://gdmltest.u-ga.fr/item/M2AN_2002__36_2_273_0/
[1] A threshold phenomenon in the propagation of a point source initiated flame. Phys. D 121 (1998) 295-316. | Zbl 0938.80003
, and ,[2] An integral equation describing the propagation of a point source initiated flame: Asymptotics and numerical analysis 5 (1998). | MR 1665560
and ,[3] Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numér. 3 (1978) 237-245. | Numdam | Zbl 0392.65042
and ,[4] A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 3 (1982) 213-229. | Zbl 0485.65087
,[5] The structure and stability of nonadiabatic flame balls. Combust. Flame 79 (1990) 381-392.
, and ,[6] The structure and stability of nonadiabatic flame balls. II. Effects on far-field losses. Combust. Flame 84 (1991) 411-422.
, and ,[7] Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991). | MR 1095269 | Zbl 0717.45002
and ,[8] Point source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 43 (1985) 99-113.
,[9] Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968). | Zbl 0174.15403
, and ,[10] Discretized fractional calculus. SIAM J. Math. Anal. 3 (1986) 704-719. | Zbl 0624.65015
,[11] Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15 (1995) 555-583. | Zbl 0834.65092
and ,[12] Dynamique d'un modèle intégro-différentiel de flammes sphériques avec pertes de chaleur. C.R. Acad. Sci. Paris Sér. 1 332 (2001) 1083-1086. | Zbl 0984.45007
,