Numerical simulation of a point-source initiated flame ball with heat losses
Audounet, Jacques ; Roquejoffre, Jean-Michel ; Rouzaud, Hélène
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002), p. 273-291 / Harvested from Numdam

This article is devoted to the numerical study of a flame ball model, derived by Joulin, which obeys to a singular integro-differential equation. The numerical scheme that we analyze here, is based upon a one step method, and we are interested in its long-time behaviour. We recover the same dynamics as in the continuous case: quenching, or stabilization of the flame, depending on heat losses, and an energy input parameter.

Publié le : 2002-01-01
DOI : https://doi.org/10.1051/m2an:2002017
Classification:  35A40,  45J05,  65M12
@article{M2AN_2002__36_2_273_0,
     author = {Audounet, Jacques and Roquejoffre, Jean-Michel and Rouzaud, H\'el\`ene},
     title = {Numerical simulation of a point-source initiated flame ball with heat losses},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {36},
     year = {2002},
     pages = {273-291},
     doi = {10.1051/m2an:2002017},
     mrnumber = {1906818},
     zbl = {1025.80007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2002__36_2_273_0}
}
Audounet, Jacques; Roquejoffre, Jean-Michel; Rouzaud, Hélène. Numerical simulation of a point-source initiated flame ball with heat losses. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 273-291. doi : 10.1051/m2an:2002017. http://gdmltest.u-ga.fr/item/M2AN_2002__36_2_273_0/

[1] J. Audounet, V. Giovangigli and J.-M. Roquejoffre, A threshold phenomenon in the propagation of a point source initiated flame. Phys. D 121 (1998) 295-316. | Zbl 0938.80003

[2] J. Audounet and J.-M. Roquejoffre, An integral equation describing the propagation of a point source initiated flame: Asymptotics and numerical analysis 5 (1998). | MR 1665560

[3] C. Bolley and M. Crouzeix, Conservation de la positivité lors de la discrétisation des problèmes d'évolution paraboliques. RAIRO Anal. Numér. 3 (1978) 237-245. | Numdam | Zbl 0392.65042

[4] H. Brunner, A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 3 (1982) 213-229. | Zbl 0485.65087

[5] J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. Combust. Flame 79 (1990) 381-392.

[6] J. Buckmaster, G. Joulin and P. Ronney, The structure and stability of nonadiabatic flame balls. II. Effects on far-field losses. Combust. Flame 84 (1991) 411-422.

[7] R. Gorenflo and S. Vessella, Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin (1991). | MR 1095269 | Zbl 0717.45002

[8] G. Joulin, Point source initiation of lean spherical flames of light reactants: An asymptotic theory. Combust. Sci. Tech. 43 (1985) 99-113.

[9] O.A. Ladyzhenskaya, N.N. Uraltseva and S.N. Solonnikov, Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968). | Zbl 0174.15403

[10] C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 3 (1986) 704-719. | Zbl 0624.65015

[11] C. Lubich and A. Ostermann, Linearly implicit time discretization of non-linear parabolic equations. IMA J. Numer. Anal. 15 (1995) 555-583. | Zbl 0834.65092

[12] H. Rouzaud, Dynamique d'un modèle intégro-différentiel de flammes sphériques avec pertes de chaleur. C.R. Acad. Sci. Paris Sér. 1 332 (2001) 1083-1086. | Zbl 0984.45007