In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.
@article{M2AN_2002__36_2_241_0, author = {Barrientos, Mauricio A. and Gatica, Gabriel N. and Maischak, Matthias}, title = {A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {241-272}, doi = {10.1051/m2an:2002011}, mrnumber = {1906817}, zbl = {1028.65114}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_2_241_0} }
Barrientos, Mauricio A.; Gatica, Gabriel N.; Maischak, Matthias. A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 241-272. doi : 10.1051/m2an:2002011. http://gdmltest.u-ga.fr/item/M2AN_2002__36_2_241_0/
[1] A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65 (1993) 23-50. | Zbl 0797.65080
and ,[2] Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A.K. Aziz Ed., Academic Press, New York (1972). | MR 421106 | Zbl 0268.65052
and ,[3] Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. | Zbl 0569.65079
and ,[4] A-posteriori Error Analysis of Dual-Mixed Variational Formulations for Linear and Nonlinear Boundary Value Problems (spanish). Ph.D. thesis, Universidad de Concepción, Concepción, Chile (in preparation).
,[5] An a-posteriori error estimate for a linear-nonlinear transmission problem in plane elastostatics. Technical Report 00-11, Departamento de Ingeniería Matemática, Universidad de Concepción (2000). Calcolo (to appear). | MR 1918321 | Zbl 1168.65388 | Zbl pre02216865
, and ,[6] A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate. Technical Report 99-25, Departamento de Ingeniería Matemática, Universidad de Concepción (1999). Numer. Math. (to appear). | MR 1900917 | Zbl 1067.74062
, and ,[7] Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. | Zbl 0678.65003
,[8] Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[9] Symmetric coupling of boundary elements and Raviart-Thomas-type mixed finite elements in elastostatics. Numer. Math. 75 (1996) 153-174. | Zbl 0877.73063
, and ,[10] A posteriori error estimate for the symmetric coupling of finite elements and boundary elements. Computing 57 (1996) 301-322. | Zbl 0863.65070
,[11] An a-posteriori error estimate for a first-kind integral equation. Math. Comp. 66 (1997) 139-155. | Zbl 0854.65102
,[12] Coupling of mixed finite elements and boundary elements. IMA J. Numer. Anal. 20 (2000) 461-480. | Zbl 0961.65097
and ,[13] On the adaptive coupling of FEM and BEM in -d-elasticity. Numer. Math. 77 (1997) 187-221. | Zbl 0880.73062
, and ,[14] Adaptive coupling of boundary elements and finite elements. RAIRO Modél. Math. Anal. Numér. 29 (1995) 779-817. | Numdam | Zbl 0849.65083
and ,[15] Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | Zbl 0368.65008
,[16] Combination of mixed finite element and Dirichlet-to-Neumann methods in nonlinear plane elasticity. Appl. Math. Lett. 10 (1997) 29-35. | Zbl 0895.73066
,[17] An application of Babuška-Brezzi's theory to a class of variational problems. Appl. Anal. 75 (2000) 297-303. | Zbl 1021.65030
,[18] A dual-dual formulation for the coupling of mixed-FEM and BEM in hyperelasticity. SIAM J. Numer. Anal. 38 (2000) 380-400. | Zbl 0992.74068
and ,[19] An implicit-explicit residual error estimator for the coupling of dual-mixed finite elements and boundary elements in elastostatics. Math. Methods Appl. Sci. 24 (2001) 179-191. | Zbl 0985.65138
, and ,[20] The uncoupling of boundary integral and finite element methods for nonlinear boundary value problems. J. Math. Anal. Appl. 189 (1995) 442-461. | Zbl 0821.65073
and ,[21] An a-posteriori error estimate for the coupling of BEM and mixed-FEM. Numer. Funct. Anal. Optim. 20 (1999) 449-472. | Zbl 0935.65127
and ,[22] A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp. 70 (2001) 1461-1480. | Zbl 0980.65132
and ,[23] A mixed-FEM formulation for nonlinear incompressible elasticity in the plane. Numer. Methods for Partial Differential Equations 18 (2002) 105-128. | Zbl 1010.74062
and ,[24] Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39-75. | Zbl 0865.65077
and ,[25] Coupling of mixed finite elements and boundary elements for a hyperelastic interface problem. SIAM J. Numer. Anal. 34 (1997) 2335-2356. | Zbl 0895.73067
and ,[26] Numerical Methods for Problems in Infinite Domains. Elsevier Science Publishers B.V. (1992), Studies in Applied Mechanics 33. | MR 1199563 | Zbl 0788.76001
,[27] Elliptic Problems in Non-Smooth Domains. Monographs and Studies in Mathematics, Vol. 24, Pitman (1985). | Zbl 0695.35060
,[28] The artificial boundary conditions for incompressible materials on an unbounded domain. Numer. Math. 77 (1997) 347-363. | Zbl 0892.73062
and ,[29] The approximation of the exact boundary conditions at an artificial boundary for linear elastic equations and its application. Math. Comp. 59 (1992) 21-37. | Zbl 0754.35008
and ,[30] Optimal order multigrid methods for solving exterior boundary value problems. SIAM J. Numer. Anal. 31 (1994) 680-694. | Zbl 0805.65113
and ,[31] Linear Integral Equations. Springer-Verlag (1989). | MR 1007594 | Zbl 0671.45001
,[32] On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 113-124. | Zbl 0854.65103
, , and ,[33] An adaptive two-level method for the coupling of nonlinear FEM-BEM equations. SIAM J. Numer. Anal. 36 (1999) 1001-1021. | Zbl 0938.65138
and ,[34] Mixed and Hybrid Methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam (1991). | MR 1115239 | Zbl 0875.65090
and ,[35] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1996). | Zbl 0853.65108
,[36] Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, London (1990). | MR 1086876 | Zbl 0731.65090
,