The numerical solution of the flow of a liquid crystal governed by a particular instance of the Ericksen-Leslie equations is considered. Convergence results for this system rely crucially upon energy estimates which involve norms of the director field. We show how a mixed method may be used to eliminate the need for Hermite finite elements and establish convergence of the method.
@article{M2AN_2002__36_2_205_0, author = {Liu, Chun and Walkington, Noel J.}, title = {Mixed methods for the approximation of liquid crystal flows}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {36}, year = {2002}, pages = {205-222}, doi = {10.1051/m2an:2002010}, mrnumber = {1906815}, zbl = {1032.76035}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2002__36_2_205_0} }
Liu, Chun; Walkington, Noel J. Mixed methods for the approximation of liquid crystal flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 205-222. doi : 10.1051/m2an:2002010. http://gdmltest.u-ga.fr/item/M2AN_2002__36_2_205_0/
[1] A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708-1726. | Zbl 0886.35010
,[2] Minimizing Oseen-Frank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor. 66 (1997) 411-447. | Numdam | Zbl 0911.35007
and ,[3] Survey lecutures on the mathematical foundations of the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations, A.K. Aziz Ed., New York (1972), Academic Press, 5-359. | Zbl 0268.65052
and ,[4] Regularity of minimizers of relaxed problems for harmonic maps. J. Funct. Anal. 101 (1991) 145-161. | Zbl 0797.49034
and ,[5] Ginzburg-Landau Vorticies. Klumer (1995).
, and ,[6] New developments on the ginzburg-landau model. Topol. Methods Nonlinear Anal. 4 (1994) 227-236. | Zbl 0840.49003
,[7] Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649-705. | Zbl 0608.58016
, and ,[8] Mixed and hybrid finite element methods, no. 15 in Computational Mathematics. Springer-Verlag (1991). | Zbl 0788.73002
and ,[9] Liquid Crystals. Cambridge (1992).
,[10] Regularity for heat flow for harmonic maps. Math. Z. 201 (1989) 83-103. | Zbl 0652.58024
and ,[11] The finite element method for elliptic problems. North-Holland (1978). | Zbl 0383.65058
,[12] Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer, Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applicatoins. Springer-Verlag, New York (1987). | MR 900831 | Zbl 0713.76006
, , , and ,[13] Relaxation and gradient methods for molecular orientation in liquid crystals. Comp. Phys. 53 (1989) 455-465.
, and ,[14] The stability in and of the projection onto finite element function spaces. Math. Comp. 48 (1987) 521-532. | Zbl 0637.41034
and ,[15] Finite element analsyis of the Landau-De Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35 (1998) 336-362. | Zbl 0908.65120
and ,[16] The Physics Of Liquid Crystals. Oxford (1974).
,[17] Vortices in superconductors: modelling and computer simulations. Philos. Trans. Roy. Soc. London 355 (1997) 1957-1968. | Zbl 0893.35123
, , and ,[18] Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265-1293. | Zbl 0888.35054
and ,[19] Analysis and convergence of a covolume approximation of the Ginzburg-Landau model of superconductivity. SIAM J. Numer. Anal. 35 (1997) 1049-1072. | Zbl 0911.65139
, and ,[20] Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. | MR 158610
,[21] On the theory of liquid crystals. Discuss. Faraday Soc. 28 (1958) 19-28.
,[22] Finite element approximation of the Navier-Stokes equations, no. 749 in Lecture Notes in Mathematics. Springer Verlag, Berlin, Heidelbert, New York (1979). | MR 548867 | Zbl 0413.65081
and ,[23] An introduction to continuum mechanics, no. 158 in Mathematics in Science and Engineering. Academic Press (1981). | MR 636255 | Zbl 0559.73001
,[24] Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J. L. Ericksen and D. Kinderlehrer Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applicatoins. Springer-Verlag, New York (1987). | MR 900833 | Zbl 0713.76006
and ,[25] Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. | Zbl 0611.35077
, and ,[26] Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. | Zbl 0673.58016
and ,[27] Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | Zbl 0923.35167
and ,[28] Harmonic mapping between Riemannian surfaces. Vol. 14 of Proc. of the C.M.A., Australian National University (1983).
,[29] Some constitutive equations for liquid crystals. Archive for Rational Mechanics and Analysis 28 (1968) 265-283. | Zbl 0159.57101
,[30] Some topics in equilibrium theory of liquid crystals, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applications. Springer-Verlag, New York (1987) 211-234.
,[31] Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school. Universidat Complutense de Madrid (1995).
,[32] Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl 0853.35058
,[33] Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. | Zbl 0842.35084
and ,[34] Global existence of solutions for the Ericksen Leslie-system. Arch. Rational Mech. Anal. (1998). | Zbl 0963.35158
and ,[35] Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26 (1989) 1310-1324. | Zbl 0685.65058
and ,[36] Dynamic theory for incompressible smectic-A liquid crystals: Existence and regularity. Discrete Contin. Dynam. Systems 6 (2000) 591-608. | Zbl 1021.35083
,[37] Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. | Zbl 1040.76036
and ,[38] The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. | Zbl 0008.04203
,[39] Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437-445. | Zbl 0483.65007
and ,[40] On the quasi-optimality in of the projection into finite element spaces. Math. Comp. 38 (1982) 1-22. | Zbl 0483.65006
and ,[41] A regularity theory for harmonic maps. J. Differential Geom. 17 (1982) 307-335. | Zbl 0521.58021
and ,[42] Weak solutions and development of singularities in su(2) -model. CPAM 41 (1988) 459-469. | Zbl 0686.35081
,[43] On some three dimensional finite elements for incompressible materials. Comput. Methods Appl. Mech. Engrg. 63 (1987) 261-269. | Zbl 0684.73036
,[44] Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 495-508. | Zbl 0702.65095
,[45] Navier-Stokes Equations. North Holland (1977). | MR 769654 | Zbl 0383.35057
,