Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients
Bhattacharyya, Pulin Kumar ; Nataraj, Neela
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002), p. 1-32 / Harvested from Numdam

Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field Ψ=(ψ ij ) 1i,j2 and displacement field ‘u’, have been developed.

Publié le : 2002-01-01
DOI : https://doi.org/10.1051/m2an:2002001
Classification:  35J40,  65N30,  35P99,  74H45
@article{M2AN_2002__36_1_1_0,
     author = {Bhattacharyya, Pulin Kumar and Nataraj, Neela},
     title = {Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {36},
     year = {2002},
     pages = {1-32},
     doi = {10.1051/m2an:2002001},
     mrnumber = {1916290},
     zbl = {0993.35031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2002__36_1_1_0}
}
Bhattacharyya, Pulin Kumar; Nataraj, Neela. Isoparametric mixed finite element approximation of eigenvalues and eigenvectors of 4th order eigenvalue problems with variable coefficients. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 36 (2002) pp. 1-32. doi : 10.1051/m2an:2002001. http://gdmltest.u-ga.fr/item/M2AN_2002__36_1_1_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030

[2] I. Babuška and J.E. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis. Vol. II, P.G. Ciarlet and J.-L. Lions, Eds., in Finite Element Methods (Part 1), North-Holland Publishing Company, Amsterdam, New York, Oxford (1991) 641-787. | Zbl 0875.65087

[3] S. Balasundaram and P.K. Bhattacharyya, On existence of solution of the Dirichlet problem of fourth-order partial differential equations with variable coefficients. Quart. Appl. Math. 39 (1983) 311-317. | Zbl 0533.35024

[4] S. Balasundaram and P.K. Bhattacharyya, A mixed finite element method for fourth-order elliptic equations with variable coefficients. Comput. Math. Appl. 10 (1984) 245-256. | Zbl 0553.65080

[5] U. Banerjee, A note on the effect of numerical quadrature in finite element eigenvalue approximation. Numer. Math. 61 (1992) 145-152. | Zbl 0748.65078

[6] U. Banerjee and J.E. Osborn, Estimates of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735-762. | Zbl 0693.65071

[7] M. Bernadou, Méthodes numériques pour les problèmes elliptiques, in Méthodes de Mathématiques Appliquées, Vol. 1, Chap. XI, C.E.A., France (1981).

[8] P.K. Bhattacharyya and N. Nataraj, Isoparametric Mixed Finite Element Approximation of Eigenvalues and Eigenvectors of 4th-Order Eigenvalue Problems with Variable Coefficients. Research Report No. R 98021, Laboratoire d' Analyse Numérique, Université de Paris VI (1998).

[9] P.K. Bhattacharyya and N. Nataraj, On Combined Effect of Boundary Approximation and Numerical Integration on Mixed Finite Element Solution of 4th order Elliptic Problems with Variable Coefficients. ESAIM: M2AN 133 (1999) 807-836. | Numdam | Zbl 0942.65133

[10] P.K. Bhattacharyya and N. Nataraj, Error Estimates for Isoparametric Mixed Finite Element Solution of 4th-Order Elliptic Problems with Variable Coefficients. In preparation. | Zbl 1006.65123

[11] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8 (1974) 129-151. | Numdam | Zbl 0338.90047

[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR 1115205 | Zbl 0788.73002

[13] F. Brezzi and P.A. Raviart, Mixed finite element methods for 4th-order elliptic equations. Topics Numer. Anal. III, J. Miller, Ed., Academic Press, New York (1978) 33-56. | Zbl 0434.65085

[14] C. Canuto, Eigenvalue approximation by mixed methods. RAIRO Anal. Numér. 12 (1978) 27-50. | Numdam | Zbl 0434.65032

[15] F. Chatelin, Spectral Approximation of Linear Operators. Academic Press, New York (1983). | MR 716134 | Zbl 0517.65036

[16] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058

[17] P.G. Ciarlet and P.A. Raviart, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in Math. Found. Finite El. Method Appl. Part. Differ. Equations, A.K. Aziz and I. Babuška, Eds., Sympos. Univ. Maryland, Baltimore (1972) 409-474. | Zbl 0262.65070

[18] M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Springer-Verlag, Berlin, Heidelberg, New York (1988). | MR 961439 | Zbl 0668.35001

[19] N.J. Decapua and B.C. Sun, Transverse vibration of a class of orthotropic plates. J. Appl. Mech. (1972) 613-615.

[20] S. Gopalsamy and P.K. Bhattacharyya, On existence and uniqueness of solution of boundary value problems of fourth-order elliptic partial differential equations with variable coefficients. J. Math. Anal. Appl. 136 (1988) 589-608. | Zbl 0673.35022

[21] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060

[22] K. Ishihara, A mixed finite element method for the biharmonic eigenvalue problem of plate bending. Publ. Res. Inst. Math. Sci. Kyoto Univ. 14 (1978) 399-414. | Zbl 0389.73075

[23] K. Ishihara, The buckling of plates by the mixed finite element method. Mem. Numer. Math. 5 (1978) 73-82. | Zbl 0435.73078

[24] V.A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16 (1967) 209-292. | Zbl 0194.13405

[25] M.P. Lebaud, Error estimate in an isoparametric finite element Eigenvalue Problem. Math. Comp. 63 (1994) 19-40. | Zbl 0807.65110

[26] A.W. Leissa, Vibration of Plates. NASA SP-160 (1969).

[27] S.G. Leknitskii, Anisotropic Plates. Gordon and Breach Science Publishers, New York (1968).

[28] J.-L. Lions, Problèmes aux limites dans les équations aux dérivées partielles. Presses Univ. Montréal, Montreal (1965). | MR 251372 | Zbl 0143.14003

[29] B. Mercier, J. Osborn, J. Rappaz and P.A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427-453. | Zbl 0472.65080

[30] T. Miyoshi, A finite element method for the solution of fourth-order partial differential equations. Kumamoto J. Sci. (Math.) 9 (1973) 87-116. | Zbl 0249.35007

[31] N. Nataraj, On Mixed Finite Element Analysis Of Fourth Order Elliptic Source/Eigenvalue Problems in Convex Domains. Ph.D. Thesis, Dept. of Mathematics, Indian Institute of Technology, Delhi (1998).

[32] L.A. Oganesian and L.A. Rukhovec, Variational difference methods for the solution of elliptic problems. Izv. Akad. Nauk Armyan. SSR, Yerevan (1979). In Russian.

[33] A.B. Ouaritini, Méthodes d'éléments finis mixtes pour des problèmes de coques minces1984).

[34] O. Pironneau, Méthodes des éléments finis pour les fluides. Masson, Paris (1988). | Zbl 0748.76003

[35] P.A. Raviart and J.M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). | Zbl 0561.65069

[36] J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis. Vol. II, in Finite Element Methods (Part 1), P.G. Ciarlet and J.-L. Lions, Eds., North-Holland Publishing Company, Amsterdam, New York, Oxford, (1991) 523-633. | Zbl 0875.65090

[37] G. Strang and G.J. Fix, An Analysis of the Finite Element Method. Prentice-Hall, New York (1973). | MR 443377 | Zbl 0278.65116 | Zbl 0356.65096

[38] S. Timoshenko and S. Woinowsky-Kreiger, Theory of Plates and Shells. McGraw-Hill Book Company, New York (1959).

[39] M. Vanmaele and A. Ženíšek, External finite-element approximations of eigenvalue problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 565-589. | Numdam | Zbl 0792.65086

[40] M. Vanmaele and A. Ženíšek, The combined effect of numerical integration and approximation of boundary in the finite element method for eigenvalue problems. Numer. Math. (1995). | MR 1347167 | Zbl 0836.65111

[41] A. Zeníšek, Nonlinear Elliptic and Evolution Problems and their Finite Element Approximations. Academic Press, New York (1990). | MR 1086876 | Zbl 0731.65090