We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes use Hood-Taylor discretizations for the velocity and pressure, and either a centered or an upwind discretization of the transport term. One facet of our analysis is that, without restrictions on the data, each scheme has a discrete solution and all discrete solutions converge strongly to solutions of the exact problem. Furthermore, if the domain is convex and the data satisfy certain conditions, each scheme satisfies error inequalities that lead to error estimates.
@article{M2AN_2001__35_6_1007_0, author = {Girault, Vivette and Scott, Larkin Ridgway}, title = {Finite-element discretizations of a two-dimensional grade-two fluid model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {1007-1053}, mrnumber = {1873516}, zbl = {1032.76033}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_6_1007_0} }
Girault, Vivette; Scott, Larkin Ridgway. Finite-element discretizations of a two-dimensional grade-two fluid model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 1007-1053. http://gdmltest.u-ga.fr/item/M2AN_2001__35_6_1007_0/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[2] Conforming and nonconforming discretizations of a two-dimensional grade-two fluid. In preparation.
, and ,[3] Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Ser. 15 (1988) 169-192. | Numdam | Zbl 0702.35208
, and ,[4] The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | Zbl 0258.65108
,[5] A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math. 111 (1999) 281-295. | Zbl 0957.76033
and ,[6] A local regularization operator for triangular and quadrilateral finite elements. SIAM J. Numer. Anal. 35 (1998) 1893-1916. | Zbl 0913.65007
and ,[7] Stabilility of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. | Zbl 0521.76027
and ,[8] The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[9] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129-151. | Numdam | Zbl 0338.90047
,[10] Stability of a higher order Hood-Taylor method. SIAM J. Numer. Anal. 28 (1991) 581-590. | Zbl 0731.76042
and ,[11] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[12] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058
,[13] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. (1975) 77-84. | Numdam | Zbl 0368.65008
,[14] Existence et unicité pour les fluides de second grade. C. R. Acad. Sci. Paris Sér. I Math. 298 (1984) 285-287. | Zbl 0571.76005
and ,[15] Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations, Collège de France Seminar 109, Pitman (1984) 178-197. | Zbl 0577.76012
and ,[16] Thermodynamics, stability, and boundedness of fluids of complexity two and fluids of second grade. Arch. Rational Mech. Anal. 56 (1974) 191-252. | Zbl 0324.76001
and ,[17] Fluids of differential type: Critical review and thermodynamic analysis. Internat. J. Engrg. Sci. 33 5 (1995) 689-729. | Zbl 0899.76062
and ,[18] Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-. Math. Comp. 51 (1988) 1177-1192. | Zbl 0699.76038
, and ,[19] Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077
and ,[20] Analysis of a two-dimensional grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981-1011. | Zbl 0961.35116
and ,[21] Hermite Interpolation of Non-Smooth Functions Preserving Boundary Conditions. Department of Mathematics, University of Chicago, Preprint (1999). | Zbl 1002.65129
and ,[22] An upwind discretization of a steady grade-two fluid model in two dimensions. To appear in Collège de France Seminar. | MR 1936003 | Zbl 1034.35110
and ,[23] Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24 Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060
,[24] Euler-Poincaré models of ideal fluids with nonlinear dispersion. Phys. Rev. Lett. 349 (1998) 4173-4177.
, and ,[25] The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. in Math. 137 (1998) 1-81. | Zbl 0951.37020
, and ,[26] Über die Aufangswertaufgabe für die hydrodynamischen Grundleichungen. Math. Nachr. 4 (1951) 213-231. | Zbl 0042.10604
,[27] A simple finite element scheme for developping upwind finite elements. Internat. J. Numer. Methods Engrg. 12 (1978) 1359-1365. | Zbl 0393.65044
,[28] Numerical Solution of PDE by the Finite Element Method. Cambridge University Press, Cambridge (1987). | MR 925005 | Zbl 0628.65098
,[29] Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 45 (1985) 285-312. | Zbl 0526.76087
, and ,[30] Étude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1-82. | Zbl 0006.16702
,[31] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603
,[32] Problèmes aux limites non homogènes et applications, I. Dunod, Paris (1968). | Zbl 0165.10801
and ,[33] A nodal basis for piecewise polynomials of degree . Math. Comp. 29 (1975) 736-740. | Zbl 0307.65074
and ,[34] Les Méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584
,[35] Contribución al estudio teórico de algunas E.D.P. no lineales relacionadas con fluidos no Newtonianos. Thesis, University of Sevilla (1995).
,[36] Sur les fluides de second grade. Thèse de 3ème Cycle, Université Paris VI (1981).
,[37] Espaces d'interpolation et théorème de Soboleff. Ann. Inst. Fourier (Grenoble) 16 (1966) 279-317. | Numdam | Zbl 0151.17903
,[38] Finite Element Methods for Fluids. Wiley, Chichester (1989). | MR 1030279 | Zbl 0712.76001
,[39] Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111-143. | Numdam | Zbl 0608.65013
and ,[40] Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl 0696.65007
and ,[41] Analysis of finite element methods for the Stokes problem: a unified approach. Math. Comp. 42 (1984) 9-23. | Zbl 0535.76037
,[42] Topics in nonlinear analysis, in Publications Mathématiques d'Orsay, Université Paris-Sud, Orsay (1978). | Zbl 0395.00008
,