We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size . In the second step, the problem is linearized by substituting into the non-linear term, the velocity computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size . This approach is motivated by the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of to the error analysis is measured in the norm in space and time, and thus, for the lowest-degree elements, is of the order of . Hence, an error of the order of can be recovered at the second step, provided .
@article{M2AN_2001__35_5_945_0, author = {Girault, Vivette and Lions, Jacques-Louis}, title = {Two-grid finite-element schemes for the transient Navier-Stokes problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {945-980}, mrnumber = {1866277}, zbl = {1032.76032}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_5_945_0} }
Girault, Vivette; Lions, Jacques-Louis. Two-grid finite-element schemes for the transient Navier-Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 945-980. http://gdmltest.u-ga.fr/item/M2AN_2001__35_5_945_0/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[2] Nonlinear Galerkin methods and mixed finite elements: two-grid algorithms for the Navier-Stokes equations. Numer. Math. 62 (1994) 189-213. | Zbl 0811.76035
and ,[3] A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. | Zbl 0593.76039
, and ,[4] The finite element method with Lagrange multipliers. Numer. Math. 20 (1973) 179-192. | Zbl 0258.65108
,[5] The Mathematical Theory of Finite Element Methods, in Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[6] On the existence, uniqueness and approximation of saddle-points problems arising from Lagrange multipliers. RAIRO Anal. Numér. (1974) 129-151. | Numdam | Zbl 0338.90047
,[7] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[8] Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745-762. | Zbl 0198.50103
,[9] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058
,[10] Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955). | MR 69338 | Zbl 0064.33002
and ,[11] Étude d'une méthode de linéarisation. Résolution numérique des équations de Stokes stationnaires. Application aux équations de Navier-Stokes stationnaires, in Approximation et méthodes itératives de résolution d'inéquations variationnelles et de problèmes non linéaires, in IRIA, Cahier 12, Le Chesnay (1974) 139-244.
,[12] Stationary Stokes and Navier-Stokes systems on two or three-dimensional domains with corners. SIAM J. Math. Anal. 20 (1989) 74-97. | Zbl 0681.35071
,[13] Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34 (1980) 441-463. | Zbl 0423.65009
and ,[14] Modelization of the interaction of small and large eddies in two dimensional turbulent flows. RAIRO Modél. Anal. Numér. 22 (1988) 93-114. | Numdam | Zbl 0663.76054
, and ,[15] Postprocessing the Galerkin method: the finite-element case. SIAM J. Numer. Anal. 37 (2000) 470-499. | Zbl 0952.65078
and ,[16] Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25-57. | Zbl 0997.76043
and ,[17] Finite Element Methods for the Navier-Stokes Equations, in Lecture Notes in Mathematics 749, Springer-Verlag, Berlin, Heidelberg, New York (1979). | MR 548867 | Zbl 0413.65081
and ,[18] Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin, Heidelberg, New York (1986). | MR 851383 | Zbl 0585.65077
and ,[19] Finite element methods for the numerical simulation of unsteady incompressible viscous flow modeled by the Navier-Stokes equations. To appear in Handbook of Numerical Analysis, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam.
,[20] Elliptic Problems in Nonsmooth Domains, in Pitman Monographs and Studies in Mathematics 24, Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060
,[21] The Navier-Stokes equations: on the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29 (1980) 639-681. | Zbl 0494.35077
,[22] Finite element approximation of the nonstationnary Navier-Stokes problem. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311. | Zbl 0487.76035
and ,[23] The Mathematical Theory of Viscous Incompressible Flow. In Russian (1961). First English translation, Gordon & Breach, Eds., New York (1963). | MR 155093 | Zbl 0121.42701
,[24] A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl. 26 (1993) 33-38. | Zbl 0773.76042
,[25] Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Appl. Math. Comput. 69 (1995) 263-274. | Zbl 0828.76017
and ,[26] A Multilevel mesh independence principle for the Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 17-30. | Zbl 0844.76053
and ,[27] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1-82. | Zbl 0006.16702
,[28] Essai sur des mouvements plans d'un liquide visqueux que limitent des parois. J. Math. Pures Appl. 13 (1934) 331-418. | JFM 60.0727.01
,[29] Essai sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934) 193-248. | JFM 60.0726.05
,[30] Équations différentielles opérationnelles 111. Springer-Verlag, Berlin, Heidelberg, New York (1961). | MR 153974 | Zbl 0098.31101
,[31] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603
,[32] Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968). | Zbl 0165.10801
and ,[33] Mathematical Topics in Fluid Mechanics. Vol. 1: Incompressible Fluids. Oxford University Press, Oxford (1996). | MR 1422251 | Zbl 0866.76002
,[34] Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Fluids. Oxford University Press, Oxford (1998). | MR 1637634 | Zbl 0908.76004
,[35] On some challenging problems in nonlinear partial differential equations, in Mathematics: Frontiers and Perspectives; Amer. Math. Soc., Providence, RI (2000) 121-135. | Zbl 0972.35094
,[36] Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26 (1989) 1139-1157. | Zbl 0683.65083
and ,[37] Nonlinear Galerkin methods: the finite element case. Numer. Math. 57 (1990) 1-22. | Zbl 0702.65081
and ,[38] Navier-Stokes equations: theory and approximation, in Handbook of Numerical Analysis. Vol. VI, P.G. Ciarlet and J.-L. Lions, Eds., Elsevier, Amsterdam (1998) 503-688. | Zbl 0921.76040
and ,[39] Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584
,[40] FE-approximation of unconstrained optimal control like problems. Report No. 70. University of Jyväskylä (1995). | Zbl 0835.65086
,[41] Finite Element Methods for Fluids. Wiley, Chichester (1989). | MR 1030279 | Zbl 0712.76001
,[42] Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl 0696.65007
and ,[43] Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1979). | MR 603444 | Zbl 0426.35003
,[44] Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115-152. | Numdam | Zbl 0181.18903
,[45] A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231-237. | Zbl 0795.65077
,[46] Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759-1777. | Zbl 0860.65119
,