The aim of this article is to give a regularization method for an unilateral obstacle problem with obstacle and second member , which generalizes the one established by the authors of [4] in case of null obstacle and a second member is equal to constant .
@article{M2AN_2001__35_5_935_0, author = {Addou, Ahmed and Mermri, E. Bekkaye and Zahi, Jamal}, title = {Regularization of an unilateral obstacle problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {935-943}, mrnumber = {1866276}, zbl = {0991.35038}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_5_935_0} }
Addou, Ahmed; Mermri, E. Bekkaye; Zahi, Jamal. Regularization of an unilateral obstacle problem. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 935-943. http://gdmltest.u-ga.fr/item/M2AN_2001__35_5_935_0/
[1] Sur une méthode de résolution d'un problème d'obstacle. Math-Recherche & Applications 2 (2000) 59-69.
and ,[2] Analyse convexe et problèmes variationnels. Gauthier-Villars, Eds., Paris, Brussels, Montreal (1974). | MR 463993 | Zbl 0281.49001
and ,[3] Numerical Analysis of Variational Inequalities. North-Holland Publishing Company, Amsterdam, New York, Oxford (1981). | MR 635927 | Zbl 0463.65046
, and ,[4] The regularisation method for an obstacle problem. Numer. Math. 69 (1994) 155-166. | Zbl 0817.65050
, and ,[5] An Introduction to Variational Inequalities and their Applications. Academic Press, New York (1980). | MR 567696 | Zbl 0457.35001
and ,