In this note we give sharp lower bounds for a non-convex functional when minimised over the space of functions that are piecewise affine on a triangular grid and satisfy an affine boundary condition in the second lamination convex hull of the wells of the functional.
@article{M2AN_2001__35_5_921_0, author = {Lorent, Andrew}, title = {An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {921-934}, mrnumber = {1866275}, zbl = {1017.74067}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_5_921_0} }
Lorent, Andrew. An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 921-934. http://gdmltest.u-ga.fr/item/M2AN_2001__35_5_921_0/
[1] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl 0629.49020
and ,[2] Proposed experimental tests of a theory of fine microstructure and the two well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. | Zbl 0758.73009
and ,[3] The appearance of microstructures in problems with incompatible wells and their numerical approach. Numer. Math. 83 (1999) 325-352. | Zbl 0937.65070
,[4] Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988) 237-277. | Zbl 0673.73012
and ,[5] Personal communication.
,[6] On the computation of crystalline microstructure. Acta Numer. 5 (1996) 191-257. | Zbl 0867.65033
,[7] Sharp energy estimates for finite element approximations of non-convex problems. Variations of domain and free-boundary problems in solid mechanics, in Solid Mech. Appl. 66, P. Argoul, M. Fremond and Q.S. Nguyen, Eds., Paris (1997) 317-325; Kluwer Acad. Publ., Dordrecht (1999).
and ,[8] Variational models for microstructure and phase transitions. MPI Lecture Note 2 (1998). Also available at: www.mis.mpg.de/cgi-bin/lecturenotes.pl
[9] Geometry of Sets and Measures in Euclidean Spaces, in Cambridge Studies in Advanced Mathematics, Cambridge (1995). | MR 1333890 | Zbl 0819.28004
,[10] On the problem of two wells. Microstructure and phase transitions. IMA J. Appl. Math. 54, D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen, Eds., Springer, Berlin (1993) 183-189. | Zbl 0797.73079
,