In this paper, a nonlinear problem corresponding to a simplified Oldroyd-B model without convective terms is considered. Assuming the domain to be a convex polygon, existence of a solution is proved for small relaxation times. Continuous piecewise linear finite elements together with a Galerkin Least Square (GLS) method are studied for solving this problem. Existence and a priori error estimates are established using a Newton-chord fixed point theorem, a posteriori error estimates are also derived. An Elastic Viscous Split Stress (EVSS) scheme related to the GLS method is introduced. Numerical results confirm the theoretical predictions.
@article{M2AN_2001__35_5_879_0, author = {Picasso, Marco and Rappaz, Jacques}, title = {Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {879-897}, mrnumber = {1866272}, zbl = {0997.76051}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_5_879_0} }
Picasso, Marco; Rappaz, Jacques. Existence, a priori and a posteriori error estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 879-897. http://gdmltest.u-ga.fr/item/M2AN_2001__35_5_879_0/
[1] Mixed finite element methods for viscoelastic flow analysis: a review. J. Non-Newtonian Fluid Mech. 79 (1998) 361-385. | Zbl 0957.76024
,[2] Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements. SIAM J. Numer. Anal. 29 (1992) 947-964. | Zbl 0759.65069
, , and ,[3] Estimateurs a posteriori d'erreur pour le calcul adaptatif d'écoulements quasi-newtoniens. RAIRO Modél. Math. Anal. Numér. 25 (1991) 31-48. | Numdam | Zbl 0712.76068
and ,[4] Finite element approximation of viscoelastic fluid flow. Numer. Math. 63 (1992) 13-27. | Zbl 0761.76032
and ,[5] Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 104 (1993) 31-48. | Zbl 0771.76033
, , and ,[6] GLS and EVSS methods for a three-field Stokes problem arising from viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 190 (2001) 3893-3914. | Zbl 1014.76043
, and ,[7] Numerical simulation of viscoelastic fluids with mesoscopic models. Ph.D. thesis, Département de Mathématiques, École Polytechnique Fédérale de Lausanne (2000).
,[8] Variance reduction methods for CONNFFESSIT-like simulations. J. Non-Newtonian Fluid Mech. 84 (1999) 191-215. | Zbl 0972.76054
and ,[9] Numerical analysis for nonlinear and bifurcation problems, in Handbook of Numerical Analysis. Vol. V: Techniques of Scientific Computing (Part 2), P.G. Ciarlet and J.L. Lions, Eds., Elsevier, Amsterdam (1997) 487-637.
and ,[10] The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978). | MR 520174 | Zbl 0383.65058
,[11] Approximation by finite elements using local regularization. RAIRO Anal. Numér. 8 (1975) 77-84. | Numdam | Zbl 0368.65008
,[12] Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Engrg. 143 (1997) 79-95. | Zbl 0896.76040
, , and ,[13] On the convergence of the mixed method of Crochet and Marchal for viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 73 (1989) 341-350. | Zbl 0692.76002
and ,[14] Stabilized finite element methods: Application to the advective-diffusive model. Comput. Methods Appl. Mech. Engrg. 95 (1992) 253-276. | Zbl 0759.76040
, , and ,[15] Error analysis of some GLS methods for elasticity equations. SIAM J. Numer. Anal. 28 (1991) 1680-1697. | Zbl 0759.73055
and ,[16] The adaptative Lagrangian particle method for macroscopic and micro-macro computations of time-dependent viscoelastic flows. Comput. Methods Appl. Mech. Engrg. 180 (199) 345-364. | Zbl 0966.76076
, , , , and ,[17] Analysis of a 2nd grade-two fluid model with a tangential boundary condition. J. Math. Pures Appl. 78 (1999) 981-1011. | Zbl 0961.35116
and ,[18] Elliptic Problems in Non Smooth Domains. Pitman, Boston (1985). | Zbl 0695.35060
,[19] Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlinear Anal. 15 (1990) 849-869. | Zbl 0729.76006
and ,[20] Simulation of viscoelastic clows using Brownian configuration Fields. J. Non-Newtonian Fluid Mech. 70 (1997) 79-101.
, , and ,[21] On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math. 72 (1995) 223-238. | Zbl 0838.76044
and ,[22] Birefringence and Laser-Doppler velocimetry studies of viscoelastic flow through a planar contraction. J. Non-Newtonian Fluid Mech. 52 (1994) 1-36.
, , and ,[23] Existence of slow steady flows of viscoelastic fluids with differential constitutive equations. Z. Angew. Math. Mech. 65 (1985) 449-451. | Zbl 0577.76014
,[24] Finite element methods for the three-field stokes system. RAIRO Modél. Math. Anal. Numér. 30 (1996) 489-525. | Numdam | Zbl 0853.76041
,[25] Analysis of a three-fields approximation of the stokes problem. RAIRO Modél. Math. Anal. Numér. 27 (1993) 817-841. | Numdam | Zbl 0791.76008
,[26] A finite element approximation for the steady solution of a second-grade fluid model. J. Comput. Appl. Math. 111 (1999) 281-295. | Zbl 0957.76033
and ,[27] Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam, New York, Oxford (1984). | MR 769654 | Zbl 0426.35003
,[28] A posteriori error estimators for the Stokes equations. Numer. Math. 55 (1989) 309-325. | Zbl 0674.65092
,