The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.
@article{M2AN_2001__35_4_767_0, author = {Coudi\`ere, Yves and Gallou\"et, Thierry and Herbin, Rapha\`ele}, title = {Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {767-778}, mrnumber = {1863279}, zbl = {0990.65122}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_4_767_0} }
Coudière, Yves; Gallouët, Thierry; Herbin, Raphaèle. Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 767-778. http://gdmltest.u-ga.fr/item/M2AN_2001__35_4_767_0/
[1] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl 0634.65105
and ,[2] Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996).
,[3] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | Zbl 0731.65093
,[4] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | Zbl 0729.65086
, and ,[5] A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J. 0566 (1995).
and ,[6] Elliptic boundary value problems in corner domains. Lecture Notes in Math. 1341 Springer-Verlag, Berlin (1988). | MR 961439 | Zbl 0668.35001
,[7] A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998).
and ,[8] Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161-168.
, and ,[9] Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | Zbl 0937.65116
, and ,[10] Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN 34 (2000) 1109-1295. | Numdam | Zbl 0972.65081
and ,[11] Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik. 82 (1999) 91-116. | Zbl 0930.65118
, and ,[12] Convergence d'un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843-861. | Numdam | Zbl 0792.65073
and ,[13] The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715-1022. | Zbl 0981.65095
, and ,[14] A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275-290. | Zbl 0761.76068
,[15] A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12 (1991) 1029-1057. | Zbl 0725.76087
,[16] Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. | Zbl 0651.65086
and ,[17] Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1035-1072. | Zbl 0986.65099
, and ,[18] Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math. 82, Birkhäuser-Verlag, Stuttgart (1987). | MR 875416 | Zbl 0623.65096
,[19] An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations 11 (1995) 165-173. | Zbl 0822.65085
,[20] Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153-160.
,[21] A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J. 2292 (1994).
and ,[22] Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233-240 .
and ,[23] Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31-55. | Zbl 0847.65075
, and ,[24] The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput. 47 (1986) 511-536. | Zbl 0635.65092
and ,[25] Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. | Zbl 0729.65087
and ,[26] Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994).
,[27] Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput. 13 (1992) 1287-1313. | Zbl 0813.65115
, and ,