Discrete Sobolev inequalities and L p error estimates for finite volume solutions of convection diffusion equations
Coudière, Yves ; Gallouët, Thierry ; Herbin, Raphaèle
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001), p. 767-778 / Harvested from Numdam

The topic of this work is to obtain discrete Sobolev inequalities for piecewise constant functions, and to deduce L p error estimates on the approximate solutions of convection diffusion equations by finite volume schemes.

Publié le : 2001-01-01
Classification:  65N15
@article{M2AN_2001__35_4_767_0,
     author = {Coudi\`ere, Yves and Gallou\"et, Thierry and Herbin, Rapha\`ele},
     title = {Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {35},
     year = {2001},
     pages = {767-778},
     mrnumber = {1863279},
     zbl = {0990.65122},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2001__35_4_767_0}
}
Coudière, Yves; Gallouët, Thierry; Herbin, Raphaèle. Discrete Sobolev inequalities and $L^p$ error estimates for finite volume solutions of convection diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 767-778. http://gdmltest.u-ga.fr/item/M2AN_2001__35_4_767_0/

[1] R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl 0634.65105

[2] R. Belmouhoub, Modélisation tridimensionnelle de la genèse des bassins sédimentaires. Thesis, École Nationale Supérieure des Mines de Paris, France (1996).

[3] Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713-735. | Zbl 0731.65093

[4] Z. Cai, Mandel J. and S. Mc Cormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | Zbl 0729.65086

[5] W.J. Coirier and K.G. Powell, A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA J. 0566 (1995).

[6] M. Dauge, Elliptic boundary value problems in corner domains. Lecture Notes in Math. 1341 Springer-Verlag, Berlin (1988). | MR 961439 | Zbl 0668.35001

[7] Y. Coudière and P. Villedieu, A finite volume scheme for the linear convection-diffusion equation on locally refined meshes, in7-th international colloquium on numerical analysis, Plovdiv, Bulgaria (1998).

[8] Y. Coudière, J.P. Vila and P. Villedieu, Convergence of a finite volume scheme for a diffusion problem, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier Eds., Hermès, Paris (1996) 161-168.

[9] Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convection diffusion problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | Zbl 0937.65116

[10] Y. Coudière and P. Villedieu, Convergence of a finite volume scheme for a two dimensional diffusion convection equation on locally refined meshes. ESAIM: M2AN 34 (2000) 1109-1295. | Numdam | Zbl 0972.65081

[11] R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numerische Mathematik. 82 (1999) 91-116. | Zbl 0930.65118

[12] R. Eymard and T. Gallouët, Convergence d'un schéma de type éléments finis-volumes finis pour un système couplé elliptique-hyperbolique. RAIRO Modél. Math. Anal. Numér. 27 (1993) 843-861. | Numdam | Zbl 0792.65073

[13] R. Eymard, T. Gallouët and R. Herbin, The finite volume method, in Handbook of numerical analysis, P.G. Ciarlet and J.L. Lions, Eds., Elsevier Science BV, Amsterdam (2000) 715-1022. | Zbl 0981.65095

[14] I. Faille, A control volume method to solve an elliptic equation on a 2D irregular meshing. Comput. Methods Appl. Mech. Engrg. 100 (1992) 275-290. | Zbl 0761.76068

[15] P.A. Forsyth, A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12 (1991) 1029-1057. | Zbl 0725.76087

[16] P.A. Forsyth and P.H. Sammon, Quadratic convergence for cell-centered grids. Appl. Numer. Math. 4 (1988) 377-394. | Zbl 0651.65086

[17] T. Gallouët, R. Herbin and M.H. Vignal, Error estimate for the approximate finite volume solutions of convection diffusion equations with Dirichlet, Neumann or Fourier boundary conditions. SIAM J. Numer. Anal. 37 (2000) 1035-1072. | Zbl 0986.65099

[18] B. Heinrich, Finite difference methods on irregular networks. A generalized approach to second order elliptic problems. Internat. Ser. Numer. Math. 82, Birkhäuser-Verlag, Stuttgart (1987). | MR 875416 | Zbl 0623.65096

[19] R. Herbin, An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods. Partial Differ. Equations 11 (1995) 165-173. | Zbl 0822.65085

[20] R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 153-160.

[21] F. Jacon and D. Knight, A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA J. 2292 (1994).

[22] R.D. Lazarov and I.D. Mishev, Finite volume methods for reaction diffusion problems, in Finite volumes for complex applications, problems and perspectives, F. Benkhaldoun and R. Vilsmeier, Eds., Hermès, Paris (1996) 233-240 .

[23] R.D. Lazarov, I.D. Mishev and P.S. Vassilevski, Finite volume methods for convection-diffusion problems. SIAM J. Numer. Anal. 33 (1996) 31-55. | Zbl 0847.65075

[24] T.A. Manteufel and A.B. White, The numerical solution of second order boundary value problem on non uniform meshes. Math. Comput. 47 (1986) 511-536. | Zbl 0635.65092

[25] K.W. Morton and E. Süli, Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. | Zbl 0729.65087

[26] D. Trujillo, Couplage espace-temps de schémas numériques en simulation de réservoir. Ph.D. Thesis, University of Pau, France (1994).

[27] P.S. Vassileski, S.I. Petrova and R.D. Lazarov, Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Statist. Comput. 13 (1992) 1287-1313. | Zbl 0813.65115