In this article, we consider the initial value problem which is obtained after a space discretization (with space step ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between and the time step size . Moreover, it is not of excessive algorithmic complexity since it does not require more than one resolution of a linear system at each time step.
@article{M2AN_2001__35_4_749_0, author = {Boillat, \'Eric}, title = {An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {749-765}, mrnumber = {1863278}, zbl = {0991.65091}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_4_749_0} }
Boillat, Éric. An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 749-765. http://gdmltest.u-ga.fr/item/M2AN_2001__35_4_749_0/
[1] The Stefan problem in several space variables. Trans. Amer. Math. Soc. 132 (1968) 51-87. | MR 227625 | Zbl 0162.41903
,[2] A numerical method for solving . RAIRO. Anal. Numér. 13 (1979) 297-312. | Numdam | MR 555381 | Zbl 0426.65052
, and ,[3] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | MR 967835 | Zbl 0638.65088
,[4] Non-equilibrium thermodynamics. North-Holland, Amsterdam (1962).
and ,[5] Analyse fonctionnelle, Théorie et applications. Masson, Paris (1993). | MR 697382 | Zbl 0511.46001
,[6] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. | MR 706391 | Zbl 0497.35049
and ,[7] Thermodynamics of irreversible processes. Interscience Publ. (1967).
,[8] A model for non-equilibrium thermodynamic processes involving phase changes. J. Inst. Math. Appl. 24 (1979) 425-438. | MR 556152 | Zbl 0426.35060
,[9] Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl 0272.65101
,[10] Error estimates for the multidimensional two-phase Stefan problem. Math. Comp. 39 (1982) 377-414. | MR 669635 | Zbl 0505.65060
and ,[11] Functional Analysis. Springer-Verlag, Berlin (1984).
,[12] Remarques sur l'approximation des problèmes paraboliques non-linéaires, in Analyse Mathématique et Applications, Gauthier-Villars, Paris (1988) 297-318. | Zbl 0673.35053
,[13] Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. RAIRO. Modèl. Math. Anal. Numér. 21 (1987) 655-678. | Numdam | MR 921832 | Zbl 0635.65123
, and ,[14] Analyse numérique des équations différentielles. Masson (1989). | MR 762089 | Zbl 0635.65079
and ,[15] Multidimensional Stefan problems. SIAM J. Numer. Anal. 10 (1973) 522-538. | MR 331807 | Zbl 0256.65054
,[16] Modélisation et analyse numérique de problèmes de réaction-diffusion provenant de la solidification d'alliages binaires. Technical Report 2071, Thèse EPFL (1999).
,[17] Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | MR 775683 | Zbl 0695.35060
,[18] Finite element approximations of singular parabolic problems. Internat. J. Numer. Methods Engrg. 26 (1988) 1989-2007. | MR 955582 | Zbl 0664.65110
, and ,[19] The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[20] Error analysis for implicit approximations to Cauchy problems. SIAM J. Numer. Anal. 33 (1996) 68-87. | MR 1377244 | Zbl 0855.65102
,[21] Galerkin finite element methods for Parabolic Problems. Springer-Verlag, Berlin (1984). | MR 744045 | Zbl 0528.65052
,[22] Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. RAIRO. Modèl. Math. Anal. Numér. 29 (1995) 605-627. | Numdam | MR 1352864 | Zbl 0837.65103
and ,