We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.
@article{M2AN_2001__35_3_525_0,
author = {B\v el\'\i k, Pavel and Brule, Timothy and Luskin, Mitchell},
title = {On the numerical modeling of deformations of pressurized martensitic thin films},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {35},
year = {2001},
pages = {525-548},
mrnumber = {1837083},
zbl = {1062.74047},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_2001__35_3_525_0}
}
Bělík, Pavel; Brule, Timothy; Luskin, Mitchell. On the numerical modeling of deformations of pressurized martensitic thin films. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 525-548. http://gdmltest.u-ga.fr/item/M2AN_2001__35_3_525_0/
[1] , Sobolev spaces. Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
[2] , and, The TUBA family of plate elements for the matrix displacement method. Aero. J. Roy. Aero. Soc. 72 (1968) 701-709.
[3] and, Solid State Physics. Saunders College Publishing, Orlando (1976).
[4] and, Fine phase mixtures as minimizers of energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. | Zbl 0629.49020
[5] and, Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl 0758.73009
[6] and, Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced. Internat. J. Numer. Methods Engrg. 17 (1981) 784-789. | Zbl 0478.73050
[7] and, A theory of thin films of martensitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531-576. | Zbl 0960.74046
[8] , and, The simply laminated microstructure in martensitic crystals that undergo a cubic to orthorhombic phase transformation. Arch. Rat. Mech. Anal. 149 (1999) 123-154. | Zbl 0942.74056
[9] and, The mathematical theory of finite element methods. Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
[10] , and, Numerical modelling of a temperature-operated martensitic microvalve. http://www.math.umn.edu/~luskin/research/valve/.
[11] and, Stability of microstructure for tetragonal to monoclinic martensitic transformations. ESAIM: M2AN 34 (2000) 663-685. | Numdam | Zbl 0981.74042
[12] and, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | Zbl 0870.65055
[13] and, Adaptive algorithms for scalar non-convex variational problems. Appl. Numer. Math. 26 (1998) 203-216. | Zbl 0894.65029
[14] , and, Numerical analysis of oscillations in multiple well problems. Numer. Math. 70 (1995) 259-282. | Zbl 0824.65045
[15] and, Equilibrium configurations of crystals. Arch. Rat. Mech. Anal. 103 (1988) 237-277. | Zbl 0673.73012
[16] and, Sharp energy estimates for finite element approximations of nonconvex problems. Preprint (1997).
[17] , The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
[18] and, Finite element stiffness matrices for analysis of plates in bending. In Proceedings of the conference on matrix methods in structural mechanics. Wright Patterson A.F.B., Ohio (1965) 515-545.
[19] , Computation of twinning. In Microstructure and phase transitions. J. Ericksen, R. James, D. Kinderlehrer and M. Luskin Eds. IMA Vol. Math. Applic. 54, Springer-Verlag, New York (1993) 39-50. | Zbl 0797.73049
[20] and, The computation of the austenitic-martensitic phase transition. In Partial differential equations and continuum models of phase transitions. M. Rascle, D. Serre and M. Slemrod Eds. Lect. Notes Phys. 344, Springer-Verlag, Berlin (1989) 34-50. | Zbl 0991.80502
[21] , and, Computational results for a two-dimensional model of crystalline microstructure. In Microstructure and phase transitions. J. Ericksen, R. James, D. Kinderlehrer and M. Luskin Eds. IMA Vol. Math. Applic. 54, Springer-Verlag, New York (1993) 51-56. | Zbl 0797.73048
[22] , Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621-1635. | Zbl 0941.65062
[23] ,,, and, Molecular beam epitaxy growth of ferromagnetic single crystal (001) NiMnGa on (001) GaAs. Appl. Phys. Lett. 75 (1999) 1443-45.
[24] , k High degree efficient symmetrical Gaussian quadrature rules for the triangle. Internat. J. Numer. Methods Engrg. 21 (1985) 1129-1148. | Zbl 0589.65021
[25] , Real analysis. Modern techniques and their applications. John Wiley & Sons, Inc., New York (1984). | MR 767633 | Zbl 0549.28001
[26] . Calculus of variations. Springer-Verlag, Berlin (1996). | Zbl 0853.49001
[27] and, Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1998). | Zbl 0562.35001
[28] , Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). | MR 737005 | Zbl 0536.65054
[29] , Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions. SIAM J. Numer. Anal. 31 (1994) 111-127. | Zbl 0797.65052
[30] , Topics in finite elasticity. SIAM, Philadelphia (1981). | MR 599913
[31] and, Pressurized shape memory thin films. J. Elasticity 59, special issue in honor of Roger Fosdick, D. Carlson Ed. (2000) 399-436. | Zbl 0990.74038
[32] ,,,, and, Thin film shape memory alloy microactuators. Journal of Microelectromechanical Systems 5 (1996) 270.
[33] , Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. | Zbl 0929.49016
[34] and, Some nonconforming finite elements for the plate bending problem. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-1 (1975) 9-53. | Numdam | Zbl 0319.73042
[35] and, Finite element analysis of microstructure for the cubic to tetragonal transformation. SIAM J. Numer. Anal. 35 (1998) 376-392. | Zbl 0919.49020
[36] and, Nonconforming finite element approximation of crystalline microstructure. Math. Comp. 67 (1998) 917-946. | Zbl 0901.73076
[37] and, Approximation of a martensitic laminate with varying volume fractions. ESAIM: M2AN 33 (1999) 67-87. | Numdam | Zbl 0928.74012
[38] , Simultaneous numerical approximation of microstructures and relaxed minimizers. Numer. Math. 78 (1997) 21-38. | Zbl 0890.65067
[39] , Introduction to linear and nonlinear programming. Addison-Wesley, Reading, Mass. (1973). | Zbl 0297.90044
[40] , Approximation of a laminated microstructure for a rotationally invariant, double well energy density. Numer. Math. 75 (1996) 205-221. | Zbl 0874.73060
[41] , On the computation of crystalline microstructure. Acta Numer. 5 (1996) 191-257. | Zbl 0867.65033
[42] and, Analysis of the finite element approximation of microstructure in micromagnetics. SIAM J. Numer. Anal. 29 (1992) 320-331. | Zbl 0760.65113
[43] , The triangular equilibrium element in the solution of plate bending problems. Aero. Quart. 19 (1968) 149-169.
[44] , On the numerical analysis of non-convex variational problems. Numer. Math. 74 (1996) 325-336. | Zbl 0858.65059
[45] , Computational methods in optimization. Academic Press, New York (1971). | MR 282511
[46] , Numerical approximation of relaxed variational problems. J. Convex Anal. 3 (1996) 329-347. | Zbl 0881.65058
[47] , Real analysis. 3rd edn, Macmillan Publishing Company, New York (1988). | MR 1013117 | Zbl 0704.26006
[48] , Functional analysis. McGraw-Hill, New York (1973). | MR 365062 | Zbl 0253.46001
[49] , Error estimates of Morley element. Chinese J. Num. Math. Appl. 12 (1990) 102-108.