The boundary behavior of a composite material
Neuss-Radu, Maria
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001), p. 407-435 / Harvested from Numdam

On étudie ici le comportement au voisinage de la frontière du domaine de solutions de problèmes elliptiques à coefficients oscillant périodiquement. Les résultats, connus pour des frontières plannes, sont étendus au cas de frontières courbes et pour un milieu stratifié. On généralise pour cela la notion de couche limite et on définit des correcteurs de frontière qui conduisent à une approximation d’ordre ε dans la norme énergie.

In this paper, we study how solutions to elliptic problems with periodically oscillating coefficients behave in the neighborhood of the boundary of a domain. We extend the results known for flat boundaries to domains with curved boundaries in the case of a layered medium. This is done by generalizing the notion of boundary layer and by defining boundary correctors which lead to an approximation of order ε in the energy norm.

Publié le : 2001-01-01
Classification:  35B27,  35B40
@article{M2AN_2001__35_3_407_0,
     author = {Neuss-Radu, Maria},
     title = {The boundary behavior of a composite material},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {35},
     year = {2001},
     pages = {407-435},
     mrnumber = {1837078},
     zbl = {0985.35092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2001__35_3_407_0}
}
Neuss-Radu, Maria. The boundary behavior of a composite material. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 407-435. http://gdmltest.u-ga.fr/item/M2AN_2001__35_3_407_0/

[1] R.A. Adams, Sobolev Spaces. Academic Press, New York, San Francisco, London (1975). | MR 450957 | Zbl 0314.46030

[2] R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications. 2nd edn. Appl. Math. Sci. 75 Springer-Verlag, New York (1988). | MR 960687 | Zbl 0875.58002

[3] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl 0770.35005

[4] G. Allaire and M. Amar, Boundary layer tails in periodic homogenization. ESAIM: COCV 4 (1999) 209-243. | Numdam | Zbl 0922.35014

[5] I. Babuska, Solution of interface problems by homogenization I. SIAM J. Math. Anal. 7 (1976) 603-634. | Zbl 0343.35022

[6] I. Babuska, Solution of interface problems by homogenization II. SIAM J. Math. Anal. 7 (1976) 635-645. | Zbl 0343.35023

[7] N. Bakhvalov and G. Panasenko, Homogenization: Averaging processes in periodic media. Mathematics and its Applications 36, Kluwer Academic Publishers, Dordrecht (1990). | MR 1112788 | Zbl 0692.73012

[8] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001

[9] A. Bensoussan, J.L. Lions and G. Papanicolau, Boundary layer analysis in homogenization of diffusion equations with Dirichlet conditions on the half space, in Proc. Internat. Symposium SDE, K. Ito Ed. J. Wiley, New York (1978) 21-40. | Zbl 0411.60078

[10] F. Blanc and S.A. Nazarov, Asymptotics of solutions to the Poisson problem in a perforated domain with corners. J. Math. Pures Appl. 76 (1997) 893-911. | Zbl 0906.35011

[11] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Springer-Verlag, Berlin, Heidelberg, New York (1983). | MR 737190 | Zbl 0361.35003

[12] W. Jäger and A. Mikelic, On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Sci. Norm. Sup. Pisa, Serie IV 23 (1996) 404-465. | Numdam | Zbl 0878.76076

[13] V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin Heidelberg, New York (1994). | MR 1329546 | Zbl 0838.35001

[14] J.L. Lions, Some methods in mathematical analysis of systems and their Control. Science Press, Beijing, Gordon and Breach, New York (1981). | MR 664760 | Zbl 0542.93034

[15] S. Moskow and M. Vogelius, First-order corrections to the homogenised eigenvalues of a periodic composite medium. A convergence proof, in Proc. Roy. Soc. Edinburgh., Sect A 127 6 (1997) 1263-1299. | Zbl 0888.35011

[16] N. Neuss, W. Jäger and G. Wittum, Homogenization and Multigrid. Preprint 1998-04, SFB 359, University of Heidelberg (1998). | MR 1821563 | Zbl 0992.35013

[17] M. Neuss-Radu, A result on the decay of the boundary layers in the homogenization theory. Asympto. Anal. 23 (2000) 313-328. | Zbl 0970.35006

[18] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl 0688.35007

[19] O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, Mathematical problems in elasticity and Homogenization. Studies in Mathematics and its Applications 26, North-Holland, Amsterdam (1992). | MR 1195131 | Zbl 0768.73003

[20] J. Sanchez-Huber and E. Sanchez-Palencia, Exercices sur les méthodes asymptotiques et l'homogénéisation. Masson, Paris (1993).

[21] E. Sanchez-Palencia, Non-homogenous media and vibration theory. Lect. Notes Phys. 127, Springer-Verlag, Berlin (1980). | MR 578345 | Zbl 0432.70002

[22] J. Wloka, Partielle differentialgleichungen. Teubner-Verlag, Stuttgart (1982). | MR 652934 | Zbl 0482.35001