We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the norm. We prove optimal order a priori error estimates in the and norms, under mild mesh conditions for two and three space dimensions.
@article{M2AN_2001__35_3_389_0, author = {Zouraris, Georgios E.}, title = {On the convergence of a linear two-step finite element method for the nonlinear Schr\"odinger equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {389-405}, mrnumber = {1837077}, zbl = {0991.65088}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_3_389_0} }
Zouraris, Georgios E. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 389-405. http://gdmltest.u-ga.fr/item/M2AN_2001__35_3_389_0/
[1] Self-focusing and self-trapping of intense light beams in a nonlinear medium. Sov. Phys. JETP 23 (1966) 1025-1033.
, and ,[2] Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13 (1993) 115-124. | Zbl 0762.65070
,[3] On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59 (1991) 31-53. | Zbl 0739.65096
, and ,[4] The mathematical theory of finite element methods. Texts Appl. Math. 15, Springer-Verlag, New York (1994). | MR 1278258 | Zbl 0804.65101
and ,[5] Nonlinear Schrödinger evolution equations. Nonlinear Analysis 4 (1980) 677-681. | Zbl 0451.35023
and ,[6] Introduction aux problémes d'évolution semi-linéaires. Ellipses, Paris (1990). | Zbl 0786.35070
and ,[7] Self-trapping of optical beams. Phys. Rev. Lett. 13 (1964) 479-482.
, and ,[8] A numerical study of the nonlinear Schrödinger equation involving quintic terms. J. Comput. Phys. 86 (1990) 127-146. | Zbl 0685.65110
, and ,[9] Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177. | Zbl 0832.65136
, and ,[10] Time decay of the solutions to a nonlinear Schrödinger equation in an exterior domain in . Nonlinear Analysis 19 (1992) 563-571. | Zbl 0776.35071
,[11] On optimal order error estimates for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 30 (1993) 377-400. | Zbl 0774.65091
, and ,[12] A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method. Math. Comp. 67 (1998) 479-499. | Zbl 0896.65068
and ,[13] Fully discrete methods for the nonlinear Schrödinger equation. Comput. Math. Appl. 28 (1994) 9-24. | Zbl 0808.65133
,[14] The role of critical exponents in blowup theorems. SIAM Review 32 (1990) 262-288. | Zbl 0706.35008
,[15] Asymptotic profiles of blow-up solutions of the nonlinear Schrödinger equation with critical power nonlinearity. J. Math. Soc. Japan 46 (1994) 557-586. | Zbl 0829.35121
,[16] Solitons in mathematics and mathematical physics. CBMS Appl. Math. Ser. 48, SIAM, Philadelphia (1988). | Zbl 0565.35003
,[17] Blow-up in nonlinear Schroedinger equations-I: A general review. Physica Scripta 33 (1986) 481-497. | Zbl 1063.35545
and ,[18] Orthogonal spline collocation methods for Schrödinger-type equations in one space variable. Numer. Math. 68 (1994) 355-376. | Zbl 0806.65123
and ,[19] Blow-up in nonlinear Schroedinger equations-II: Similarity structure of the blow-up singularity. Physica Scripta 33 (1986) 498-504. | Zbl 1063.35546
and ,[20] Methods for the numerical solution of the nonlinear Schroedinger equation. Math. Comp. 43 (1984) 21-27. | Zbl 0555.65061
,[21] Nonlinear wave equations. CBMS Regional Conference Series Math. No. 73, AMS, Providence, RI (1989). | MR 1032250 | Zbl 0714.35003
,[22] Self-focusing of wave beams in nonlinear media. JETP Lett. 2 (1965) 138-141.
,[23] Galerkin finite-element methods for parabolic problems. Springer Series Comput. Math. 25, Springer-Verlag, Berlin, Heidelberg (1997). | Zbl 0528.65052
,[24] estimates for two time-discrete Galerkin approximations of a nonlinear Schrödinger equation. IMA J. Numer. Anal. 11 (1991) 509-523. | Zbl 0737.65095
,[25] Classical solutions of nonlinear Schrödinger equations in higher dimensions. Math. Z. 177 (1981) 217-234. | Zbl 0438.35028
and ,[26] Collapse of Langmuir waves. Sov. Phys. JETP 35 (1972) 908-922.
,