On considère un problème de déplacement d'une arche chargée et de faible épaisseur. Pour approcher la solution de ce problème, on donne une méthode d'éléments finis Galerkin mixte conforme qui tient compte d'une approximation de la forme de l'arche. Cependant une application directe d'une telle méthode ne donne pas de résultat de convergence satisfaisant pour une faible épaisseur. On propose d'enrichir cette méthode par des fonctions bulles résiduelles.
We consider a general loaded arch problem with a small thickness. To approximate the solution of this problem, a conforming mixed finite element method which takes into account an approximation of the middle line of the arch is given. But for a very small thickness such a method gives poor error bounds. the conforming Galerkin method is then enriched with residual-free bubble functions.
@article{M2AN_2001__35_2_271_0, author = {Agouzal, A. and El Alami El Ferricha, M.}, title = {Approximation of the arch problem by residual-free bubbles}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {271-293}, mrnumber = {1825699}, zbl = {1007.74070}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_2_271_0} }
Agouzal, A.; El Alami El Ferricha, M. Approximation of the arch problem by residual-free bubbles. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 271-293. http://gdmltest.u-ga.fr/item/M2AN_2001__35_2_271_0/
[1] A uniformly accurate finite element method for the Reissner Mindlin plate. SIAM J. Numer. Anal 26 (1989) 1276-1250. | Zbl 0696.73040
and ,[2] The finite element method with Lagrangian multipliers. Numer. Math 20 (1973) 179-192. | Zbl 0258.65108
,[3] On the locking and robustness in the finite element method. SIAM J. Numer. Anal. 29 (1992) 1276-1290. | Zbl 0763.65085
and ,[4] Virtual bubbles and the Galerkin-Least-squares method. Comput. Methods Appl. Mech. Engrg. 105 (1993) 125-141. | Zbl 0772.76033
, and ,[5] Approximation of a general arch problems by straight beam elements. Numer. Math. 40 (1982) 1-29. | Zbl 0508.73069
and ,[6] On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO-Anal. Numér. (1974) 129-151. | Numdam | Zbl 0338.90047
,[7] Stabilized mixed methods for the stokes problem. Numér. Math. 53 (1988) 225-236. | Zbl 0669.76052
and ,[8] Mixed and hybrid finite Element Methods. Springer-Verlag, Berlin, New-York, Springer Ser. Comput. Math. 15 (1991). | MR 1115205 | Zbl 0788.73002
and ,[9] Choosing bubbles for advection-diffusion problems. Math. Models Methods Appl. Sci. 4 (1994) 571-578. | Zbl 0819.65128
and ,[10] On the best first order linear shell theory. Progr. Appl. Mech., Mac Millan, New-York, 129-140.
and ,[11] Rousselet and B. Benedict, Design sensibivity for arch structures with respect to midsurface shape under static loading. J. Optim. Theory Appl. 58 (1988) 225-239. | Zbl 0631.49015
,[12] On the locking phenomenon for a class of elliptic problems. Numer. Math. 67 (1994) 427-440 | Zbl 0798.73054
and ,[13] The finite element method for elliptic problems. North Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[14] Some numerical aspects of mixed finite elements for bending plates. Comput. Methods. Appl. Mech. Engrg. 78 (1990) 73-87. | Zbl 0707.73074
,[15] Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Engrg. 69 (1986) 89-129. | Zbl 0629.73053
and ,[16] Unlocking with residual-free bubbles. Comput. Methods Appl. Mech. Engrg. 142 (1997) 361-364 | Zbl 0890.73064
and ,[17] Deterioration of a finite element method for arch structures when thickness goes to zero. Numer. Math. 62 (1992) 321-341. | Zbl 0756.73088
and ,[18] A new formulation for arch structures. Application to optimization problems. RAIRO-Modél. Math. Anal. Numér. 28 (1994) 873-902. | Numdam | Zbl 0817.73041
,[19] Stability Convergence and accuracy of a New finite element method for the circular arch problem. Comput. Methods Appl. Mech. Engrg. 63 (1987) 281-303. | Zbl 0607.73077
, , and ,[20] Contributions théoriques en Optimisation et Modélisation des structures. Thèse Université de Nice Sophia-Antipolis, Nice (1995).
,[21] Residual-free bubbles and Stabilized methods, in Proc. of the ninth International Conference on finite Elements in Fluids-New Trends and Applications, M.M. Cacchi, K. Morgan, J. Pariaux, B.A. Schreffer, O.C. Zienkiewicz, Eds., Venice (1995) 377-386.
,[22] Bubble Stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 132 (1996) 333-343. | Zbl 0887.76038
,