Dans cet article nous mettons en œuvre différents schémas numériques pour simuler les équations de Schrödinger-Debye qui sont issues de l'optique non linéaire. Comme l'existence de solutions qui explosent en temps fini est un problème ouvert, nous essayons de calculer de telles solutions. On prouve la convergence des méthodes et les résultats numériques semblent en effet montrer qu'au moins pour de petits temps de retard il peut exister des solutions qui explosent en temps fini.
In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.
@article{M2AN_2001__35_1_35_0, author = {Besse, Christophe and Bid\'egaray, Brigitte}, title = {Numerical study of self-focusing solutions to the Schr\"odinger-Debye system}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {35}, year = {2001}, pages = {35-55}, mrnumber = {1811980}, zbl = {0979.65086}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2001__35_1_35_0} }
Besse, Christophe; Bidégaray, Brigitte. Numerical study of self-focusing solutions to the Schrödinger-Debye system. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 35 (2001) pp. 35-55. http://gdmltest.u-ga.fr/item/M2AN_2001__35_1_35_0/
[1] Numerical approximation of blow-up of radially symmetric solutions of the nonlinear Schrödinger equation (1997). Preprint. | MR 2047201 | Zbl 1039.35115
, , and ,[2] Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci., Sér. I 326 (1998) 1427-1432. | Zbl 0911.65072
,[3] Analyse numérique des systèmes de Davey-Stewartson. Ph.D. thesis, University of Bordeaux I, France (1998).
,[4] Accuracy of the split-step schemes for the Nonlinear Schrödinger Equation. (In preparation).
, and ,[5] On the Cauchy problem for systems occurring in nonlinear optics. Adv. Differential Equations 3 (1998) 473-496. | Zbl 0949.35007
,[6] The Cauchy problem for Schrödinger-Debye equations. Math. Models Methods Appl. Sci. 10 (2000) 307-315. | Zbl 1010.78010
,[7] Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London, Ser. A 351 (1995) 107-164. | Zbl 0824.65095
, , and ,[8] An introduction to nonlinear Schrödinger equations. Textos de métodos matemáticos 26, Rio de Janeiro (1990).
,[9] Blow-up and Scattering in the nonlinear Schrödinger equation. Textos de métodos matemáticos 30, Rio de Janeiro (1994).
,[10] Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete Contin. Dynam. Systems 4 (1998) 671-690. | Zbl 0976.76054
and ,[11] Finite-difference solutions of a nonlinear Schrödinger equation. J. Comput. Phys. 44 (1981) 277-288. | Zbl 0477.65086
, and ,[12] Estimations sur la formule de Strang. C. R. Acad. Sci. Paris, Sér. I 320 (1995) 775-779. | Zbl 0827.47034
and ,[13] Approximations numériques d'équations de Schrödinger non linéaires et de modèles associés. Ph.D. thesis, University of Bordeaux I, France (1995).
,[14] Quelques contributions mathématiques en optique non linéaire. Ph.D. thesis, École Polytechnique, France (1994).
,[15] Self-focusing in the perturbed and unperturbed nonlinear Schrödinger equation in critical dimension. SIAM J. Appl. Math. 60 (2000) 183-240. | Zbl 1026.78013
and ,[16] Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comput. 58 (1992) 83-102. | Zbl 0746.65066
,[17] Nonlinear Optics. Addison-Wesley (1992). | MR 1163192
and ,[18] | Zbl 0555.65061
for the Numerical Solution of the Nonlinear Schrödinger Equation. Math. Comput. 43 (1984) 21-27[19] The Principles of Nonlinear Optics. Wiley, New York (1984). | Zbl 1034.78001
,[20] | Zbl 0184.38503
the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506-517.[21] Numerical Simulation of Singular Solutions to the Two-Dimensional Cubic Schrödinger Equation. Commun. Pure Appl. Math. 37 (1984) 755-778. | Zbl 0543.65081
, and ,[22] Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485-507. | Zbl 0597.76012
and ,