@article{M2AN_2000__34_6_1233_0, author = {Gunzburger, Max D. and Kim, Hongchul and Manservisi, Sandro}, title = {On a shape control problem for the stationary Navier-Stokes equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {34}, year = {2000}, pages = {1233-1258}, mrnumber = {1812735}, zbl = {0981.76027}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2000__34_6_1233_0} }
Gunzburger, Max D.; Kim, Hongchul; Manservisi, Sandro. On a shape control problem for the stationary Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 1233-1258. http://gdmltest.u-ga.fr/item/M2AN_2000__34_6_1233_0/
[1] On some control problems in fluid mechanics. Theor. Comp. Fluid Dyn. 1 (1990) 303-326. | Zbl 0708.76106
and ,[2] Sobolev Spaces, Academic Press, New York (1975). | MR 450957 | Zbl 0314.46030
,[3] Optimal Control. Consultants Bureau, New York (1987). | MR 924574 | Zbl 0689.49001
, and ,[4] On the problem of riblets as a drag reduction device. Optimal Control Appl. Methods 10 (1989) 93-112. | MR 997236 | Zbl 0667.49002
and ,[5] The finite element method with Lagrangian multipliers. Numer. Math. 16 (1973) 179-192. | MR 359352 | Zbl 0258.65108
,[6] Existence of a solution for complete least squares optimal shape problems. Numer. Funct. Anal. Optim. 18 (1997) 495-505. | MR 1467658 | Zbl 0895.35042
,[7] An extension theorem for the space Hdiv. Appl. Math. Lett. (to appear). | Zbl 0915.46024
and ,[8] Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés. Appl. Math. Optim. 2 (1975) 130-169. | MR 443372 | Zbl 0323.90063
and ,[9] On the existence of a solution in a domain identification problem. J. Math. Anal. Appl 52 (1975) 189-219. | MR 385666 | Zbl 0317.49005
,[10] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[11] Introduction to Numerical Linear Algebra and Optimization. Cambridge University, Cambridge (1989). | MR 1015713 | Zbl 0672.65001
,[12] Least squares domain embedding methods for Neumann problems: applications to fluid dynamics, in Domain Decomposition Methods for Partial Differential Equations, D. Keyes et al. Eds., SIAM, Philadelphia (1992). | MR 1189595 | Zbl 0768.76045
, , , , and ,[13] Consistent approximations for an optimal design problem. Report 98005, Labotatoire d'Analyse Numérique, Paris (1998).
, and ,[14] Lower semi-continuity in domain optimization problems. J. Optim. Theory Appl. 57 (1988) 407-422. | MR 972916 | Zbl 0629.49006
,[15] The Finite Element Method for Navier-Stokes Equations: Theory and Algorithms. Springer, New York (1986). | MR 851383 | Zbl 0585.65077
and ,[16] Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). | MR 737005 | Zbl 0536.65054
,[17] Toward the computation of minimum drag profile in viscous laminar flow. Appl. Math. Model. 1 (1976) 58-66. | MR 455851 | Zbl 0361.76035
and ,[18] Analysis and finite element approximations of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. RAIRO Modél. Math. Anal. Numér. 25 (1991) 711-748. | Numdam | MR 1135991 | Zbl 0737.76045
, and ,[19] Optimal control and optimization of viscous, incompressible flow, in Incompressible Computational Fluid Dynamics, M. Gunzburger and R. Nicolaides Eds., Cambridge University, New York (1993) 109-150.
, and ,[20] Existence of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36 (1998) 895-909. | MR 1613877 | Zbl 0917.49004
and ,[21] Analysis and approximation of the velocity tracking problem for Navier-Stokes equations with distributed control. SIAM J. Numer. Anal. 37 (2000) 1481-1512. | MR 1759904 | Zbl 0963.35150
and ,[22] The velocity tracking problem for Navier-Stokes flows with bounded distributed control. SIAM J. Control Optim. 37 (1999) 1913-1945. | MR 1720145 | Zbl 0938.35118
and ,[23] A variational inequality formulation of an inverse elasticity problem. Comput. Methods Appl. Mech. Engrg. 189 (2000) 803-823. | MR 1755697 | Zbl 0969.76025
and ,[24] Some numerical computations of optimal shapes for Navier-Stokes flows (in préparation).
and ,[25] Control fictitious domain method for solving optimal shape design problems. RAIRO Modél Math. Anal. Numér. 27 (1993) 157-182. | Numdam | MR 1211614 | Zbl 0772.65043
, and ,[26] Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd edn. Wiley, Chichester (1996). | MR 1419500 | Zbl 0845.73001
and ,[27] Shape optimization for mixed boundary value problems based on an embedding domain method (to appear). | Zbl 0914.49027
and ,[28] Optimal Shape Design in Fluid Mechanics. Thesis, University of Paris, France (1976).
,[29] On optimal design in fluid mechanics. J. Fluid. Mech. 64 (1974) 97-110. | MR 347229 | Zbl 0281.76020
,[30] Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984). | MR 725856 | Zbl 0534.49001
,[31] Hilbert Space Methods for Partial Differential Equations. Electron. J. Differential Equations (1994) http://ejde.math.swt.edu/mono-toc.html | MR 1302484 | Zbl 0991.35001
,[32] Domain variation for Stokes fiow, in Lecture Notes in Control and Inform. Sci. 159, X. Li and J. Yang Eds., Springer, Berlin (1990) 28-42. | MR 1129956 | Zbl 0801.76075
,[33] Domain variation for drag Stokes flows, in Lecture notes in Control and Inform. Sci.114, A. Bermudez Ed., Springer, Berlin (1987) 277-283. | Zbl 0801.76075
,[34] Domain Optimization for the Stationary Stokes and Navier-Stokes Equations by Embedding Domain Technique. Thesis, TU Berlin, Berlin (1998).
,[35] Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer, Berlin (1992). | MR 1215733 | Zbl 0761.73003
and ,[36] Non-smooth analysis and shape optimization in flow problems. IMA Preprint Series 1046, IMA, Minneapolis (1992).
,[37] Navier-Stokes equation. North-Holland, Amsterdam (1979).
,[38] Navier-Stokes equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1993). | MR 1318914 | Zbl 0833.35110
,[39] Fundamental Principles of the Theory of Extremal Problems. Wiley, Chichester (1986). | MR 866483 | Zbl 0595.49001
,