@article{M2AN_2000__34_6_1203_0, author = {Runborg, Olof}, title = {Some new results in multiphase geometrical optics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {34}, year = {2000}, pages = {1203-1231}, mrnumber = {1812734}, zbl = {0972.78001}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2000__34_6_1203_0} }
Runborg, Olof. Some new results in multiphase geometrical optics. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 1203-1231. http://gdmltest.u-ga.fr/item/M2AN_2000__34_6_1203_0/
[1] Big ray tracing and eikonal solver on unstructured grids: Application to the computation of a multivalued traveltime field in the Marmousi model. Geophysics 64 (1999) 230-239.
and ,[2] Big ray tracing : Multivalued travel time field computation using viscosity solutions of the eikonal equation. J. Comput Phys. 128 (1996) 463-474. | Zbl 0860.65052
,[3] Direct solution of multivalued phase space solutions for Hamilton-Jacobi equations. Comm. Pure Appl. Math. 52 (1999) 1443-1475. | MR 1702708 | Zbl 0935.35032
,[4] High frequency limit of the Helmholtz equation. Research report DMA-99-25, Département de Mathématiques et Applications, École Normale Supérieure, Paris (1999). | Numdam | MR 1813168 | Zbl 1113.35334
, , and ,[5] On zero pressure gas dynamics, in Advances in kinetic theory and Computing, Ser. Adv. Math. Appl. Sci. 22, World Sci. Publishing, River Edge, NJ (1994) 171-190. | MR 1323183 | Zbl 0863.76068
,[6] Équations de transport unidimensionnelles à coefficients discontinus. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 1097-1102. | MR 1332618 | Zbl 0829.35139
and ,[7] Duality solutions for pressureless gases, monotone scalar conservation laws and uniqueness. Comm. Partial Differential Equations 24 (1999) 2173-2189. | MR 1720754 | Zbl 0937.35098
and ,[8] A kinetic formulation for multibranch entropy solutions of scalar conservation laws. Ann. Inst. H. Poincaré 15 (1998) 169-190. | Numdam | MR 1614638 | Zbl 0893.35068
and ,[9] Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35 (1998) 2317-2328. | MR 1655848 | Zbl 0924.35080
and ,[10] High frequency limit of the Helmholtz equation II : Source on a general smooth manifold. Research report, Département de Mathématiques et Applications, École Normale Supérieure, Paris (2000). | Zbl pre01786302
, and ,[11] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math., Soc. 277 (1983) 1-42. | MR 690039 | Zbl 0599.35024
and ,[12] Generalized variational principles, global weak solutions and behavior with random initial data for Systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996) 349-380. | MR 1384139 | Zbl 0852.35097
, and ,[13] Numerical solution of the high frequency asymptotic expansion for the scalar wave equation. J. Comput. Phys. 120 (1995) 145-155. | MR 1345031 | Zbl 0836.65099
, and ,[14] Multiphase computations in geometrical optics. J. Comput. Appl. Math. 74 (1996) 175-192. | MR 1430373 | Zbl 0947.78001
and ,[15] Multiphase computations in geometricai opties, in Hyperbolic Problems : Theory, Numerics, Applications, M. Fey and R. Jeltsch Eds., Internat. Ser. Numer. Math. 129, ETH Zentrum, Zurich, Switzerland (1998). | Zbl 0963.78004
and ,[16] Homogenization limits and Wigner transforms. Comm. Pure Appl. Math. 50 (1997) 323-379. | MR 1438151 | Zbl 0881.35099
, , and ,[17] Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comp. 69 (2000) 987-1015. | MR 1670896 | Zbl 0949.65094
and ,[18] On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2 (1949) 331-407. | MR 33674 | Zbl 0037.13104
,[19] Existence globale pour le système des gaz sans pression. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 171-174. | MR 1345441 | Zbl 0837.35088
,[20] Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | MR 1638064 | Zbl 0914.65095
and ,[21] Geometrical theory of diffraction. J. Opt Soc. Amer. 52 (1962) 116-130. | MR 135064 | Zbl 0092.20604
,[22] A uniform theory of diffraction for an edge in a perfectly conducting surface. Proc. IEEE 62 (1974) 1448-1461.
and ,[23] On a modification of the geometrical optics method. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7 (1964) 664-673.
,[24] Numerical Methods for Conservation Laws. Birkhäuser (1992). | MR 1153252 | Zbl 0847.65053
,[25] Moment closure hierarchies for kinetic théories. J. Stat Phys. 83 (1996) 1021-1065. | MR 1392419 | Zbl 1081.82619
,[26] Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. | MR 1251718 | Zbl 0801.35117
and ,[27] Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19 (1966) 215-250. | MR 196254 | Zbl 0163.13703
,[28] High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907-922. | MR 1111446 | Zbl 0736.65066
and ,[29] Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Comm. Partial Differential Equations 22 (1997) 337-358. | MR 1434148 | Zbl 0882.35026
and ,[30] Multiscale and Multiphase Methods for Wave Propagation. Ph.D. thesis, Department of Numerical Analysis and Computing Science, KTH, Stockholm (1998).
,[31] A slowness matching finite difference method for traveltimes beyond transmission caustics. Preprint, Dept. of Computational and Applied Mathematics, Rice University (1996).
,[32] H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230. | MR 1069518 | Zbl 0774.35008
,[33] Upwind finite-difference calculation of traveltimes. Geophysics 56 (1991) 812-821.
and ,[34] Finite-difference calculation of traveltimes. Bull. Seismol. Soc. Amer. 78 (1988) 2062-2076.
,[35] Linear and Nonlinear Waves. John Wiley & Sons (1974). | MR 483954 | Zbl 0373.76001
,[36] Systems of conservation laws with incomplete sets of eigenvectors everywhere, in Advances in Nonlinear Partial Differential Equations and Related Areas, World Sci. Publishing, River Edge, NJ (1998) 399-426. | MR 1690841 | Zbl 0929.35089
,