@article{M2AN_2000__34_6_1151_0, author = {Golse, Fran\c cois and Wennberg, Bernt}, title = {On the distribution of free path lengths for the periodic Lorentz gas II}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {34}, year = {2000}, pages = {1151-1163}, mrnumber = {1812731}, zbl = {1006.82025}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2000__34_6_1151_0} }
Golse, François; Wennberg, Bernt. On the distribution of free path lengths for the periodic Lorentz gas II. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 1151-1163. http://gdmltest.u-ga.fr/item/M2AN_2000__34_6_1151_0/
[1] On the Boltzmann equation for the Lorentz gas. J. Statist. Phys. 32 (1983) 477-501. | MR 725107 | Zbl 0583.76092
, and ,[2] On the distribution of free path lengths for the periodic Lorentz gas. Comm. Math. Phys. 190 (1998) 491-508. | MR 1600299 | Zbl 0910.60082
, and ,[3] Markov Partitions of Dispersed Billiards. Comm. Math. Phys. 73 (1980) 247-280. | MR 597749 | Zbl 0453.60098
and ,[4] Statistical properties of the Lorentz gas with periodic configurations of scatterers. Comm. Math. Phys. 78 (1981) 479-497. | MR 606459 | Zbl 0459.60099
and ,[5] Markov partitions for two-dimensional hyperbolic billiards. Russian Math. Surveys 45 (1990) 105-152. | MR 1071936 | Zbl 0721.58036
, and ,[6] Statistical properties of two-dimensional hyperbolic billiards. Russian Math. Surveys 46 (1991) 47-106. | MR 1138952 | Zbl 0780.58029
, and ,[7] Remarks on the notion of mean free path for a periodic array of spherical obstacles. J. Statist Phys. 87 (1997) 943-950. | MR 1459048 | Zbl 0952.82512
, and ,[8] Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota Interna No. 358, Istituto di Fisica, Università di Roma (1972).
,[9] Transport dans les milieux composites fortement contrastés. I. Le modèle du billard. Ann. Inst. H. Poincaré Phys. Théor. 61 (1994) 381-410. | Numdam | MR 1311536 | Zbl 0813.35089
,[10] The Lorentz flight process converges to a random flight process. Comm. Math. Phys. 60 (1978) 277-290. | MR 496299 | Zbl 0381.60099
,