@article{M2AN_2000__34_6_1123_0, author = {Coudi\`ere, Yves and Villedieu, Philippe}, title = {Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {34}, year = {2000}, pages = {1123-1149}, mrnumber = {1812729}, zbl = {0972.65081}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2000__34_6_1123_0} }
Coudière, Yves; Villedieu, Philippe. Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 1123-1149. http://gdmltest.u-ga.fr/item/M2AN_2000__34_6_1123_0/
[1] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777 787. | MR 899703 | Zbl 0634.65105
and ,[2] Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | MR 1399499 | Zbl 0857.65116
, and ,[3] Local adaptative mesh refinement for shock hydrodynamics. J. Comput. Phys. 82 (1989) 64-84. | Zbl 0665.76070
and ,[4] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | MR 1090257 | Zbl 0731.65093
,[5] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | MR 1087511 | Zbl 0729.65086
, and ,[6] On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J. Numer. Anal 27 (1990) 636-655. | MR 1041256 | Zbl 0707.65073
and ,[7] An Adaptatively-Refined, Cartesian, Cell-based Scheme for the Euler and Navier-Stokes Equations. Ph.D. thesis, Michigan Univ., NASA Lewis Research Center (1994).
,[8] A Cartesian, cell-based approach for adaptative-refined solutions of the Euler and Navier-Stokes equations. AIAA (1995).
and ,[9] Analyse de schémas volumes finis sur maillages non structurés pour des problèmes linéaires hyperboliques et elliptiques. Ph.D. thesis, Université Paul Sabatier (1999).
,[10] Discrete sobolev inequalities and lp error estimates for approximate finite volume solutions of convection diffusion equation. Preprint of LATP, University of Marseille 1, 98-13 (1998).
, and ,[11] Convergence rate of a finite volume scheme for a two dimensionnal diffusion convection problem. ESAIM: M2AN 33 (1999) 493-516. | Numdam | MR 1713235 | Zbl 0937.65116
, and ,[12] Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631-649. | Numdam | MR 1643473 | Zbl 0920.65065
and ,[13] Elliptic Boundary Value Problems in Corner Domains. Lect. Notes Math., Springer-Verlag, Berlin (1988). | MR 961439 | Zbl 0668.35001
,[14] Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis. Math. Comp. 56 (1991) 437-461. | MR 1066831 | Zbl 0724.65093
, and ,[15] Finite volume methods, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds. (to appear). Prépublication No 97-19 du LATP, UMR 6632, Marseille (1997). | MR 1804748 | Zbl 0981.65095
, and ,[16] Quadratic convergence for cell-centered grids. Appl Numer. Math. 4 (1988) 377-394. | MR 948505 | Zbl 0651.65086
and ,[17] Finite Difference Methods on Irregular Networks. Internat. Ser. Numer. Anal. 82, Birkhaüser, Verlag Basel (1987). | MR 875416 | Zbl 0623.65096
,[18] An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh. Numer. Methods Partial Differential Equations 11 (1994) 165-173. | MR 1316144 | Zbl 0822.65085
,[19] A Navier-Stokes algorithm for turbulent flows using an unstructured grid and flux difference splitting. AIAA (1994).
and ,[20] On the finite volume element method for general self-adjoint elliptic problem. SIAM J. Numer. Anal. 35 (1998) 1762-1774. | MR 1640017 | Zbl 0913.65097
and ,[21] Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Technical report, CEA (1976).
,[22] The numerical solution of second-order boundary values problems on nonuniform meshes. Math. Comp. 47 (1986) 511-535. | MR 856700 | Zbl 0635.65092
and ,[23] Variational analysis of a mixed finite element finite volume scheme on general triangulations. Technical Report 2213, INRIA, Sophia Antipolis (1994).
,[24] Finite volume methods on voronoï meshes. Numer. Methods Partial Differential Equations 14 (1998) 193-212. | MR 1605410 | Zbl 0903.65083
,[25] Finite volume methods and their analysis. IMA J. Numer. Anal. 11 (1991) 241-260. | MR 1105229 | Zbl 0729.65087
and ,[26] Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. | MR 1119276 | Zbl 0802.65104
,[27] Analysis of finite volumes methods. Technical Report 95/19, CNRS, URA 1204 (1995).
and .[28] Convergence of finite volumes methods. Technical Report 95/20, CNRS, URA 1204 (1995).
and ,[29] Convergence analysis of a finite volume method via a new nonconforming finite element method. Numer. Methods Partial Differential Equations 14 (1998) 213-231. | MR 1605414 | Zbl 0903.65084
and ,[30] Finite difference schemes on triangular cell-centered grids with local refinement. SIAM J. Sci. Stat. Comput. 13 (1992) 1287-1313. | MR 1185647 | Zbl 0813.65115
, and .[31] On convergence of block-centered finite differences for elliptic problems. SIAM J. Numer. Anal. 25 (1988) 351-375. | MR 933730 | Zbl 0644.65062
and ,