@article{M2AN_2000__34_4_775_0, author = {Chen, Zhiming and Nochetto, Ricardo H. and Schmidt, Alfred}, title = {Error control and adaptivity for a phase relaxation model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {34}, year = {2000}, pages = {775-797}, mrnumber = {1784485}, zbl = {0965.65114}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2000__34_4_775_0} }
Chen, Zhiming; Nochetto, Ricardo H.; Schmidt, Alfred. Error control and adaptivity for a phase relaxation model. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 775-797. http://gdmltest.u-ga.fr/item/M2AN_2000__34_4_775_0/
[1] Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527-548. | MR 1742264 | Zbl 0943.65075
and ,[2] Adaptive finite element methods for diffuse interface models (in preparation).
, and ,[3] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[4] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008
,[5] Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43-77. | MR 1083324 | Zbl 0732.65093
and ,[6] Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729-1749. | MR 1360457 | Zbl 0835.65116
and ,[7] Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal 35 (1998) 1315-1325. | MR 1620144 | Zbl 0909.65063
, and ,[8] Elliptic Problems on Non-smooth Domains. Pitman, Boston (1985). | Zbl 0695.35060
,[9] Optimal error estimates for semidiscrete phase relaxation models. RAIRO Model. Math. Anal. Numér. 31 (1997) 91-120. | Numdam | MR 1432853 | Zbl 0874.65069
and ,[10] A P1 - P1 finite element method for a phase relaxation model. I. Quasi uniform mesh. SIAM J. Numer. Anal. 35 (1998) 1176-1190. | MR 1619875 | Zbl 0972.65067
and ,[11] A Pl - P1 finite element method for a phase relaxation model. II. Adaptively refined meshes. SIAM J. Numér. Anal. 36 (1999) 974-999. | MR 1688994 | Zbl 0934.65105
, and ,[12] Continuous and semidiscrete traveling waves for a phase relaxation model. European J. Appl. Math. 5 (1994) 177-199. | MR 1285038 | Zbl 0812.35166
, and ,[13] Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Sér. I 326 (1998) 1437-1442. | MR 1649189 | Zbl 0944.65077
, and ,[14] A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 529-589. | MR 1737503 | Zbl 1021.65047
, and ,[15] A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1-24. | MR 1648399 | Zbl 0942.65111
, and ,[16] Numerical analysis of the multidimensional Stefan problem with supercooling and superheating. Boll. Un. Mat. Ital. B 7 (1987) 795-814. | MR 916294 | Zbl 0629.65130
and ,[17] Error estimates for a semi-explicit numerical scheme for Stefan-type problems. Numer. Math. 52 (1988) 165-185. | MR 923709 | Zbl 0617.65125
and ,[18] Stefan problem with phase relaxation. IMA J. Appl. Math. 34 (1985) 225-245. | MR 804824 | Zbl 0585.35053
,[19] Supercooling and superheating effects in phase transitions. IMA J. Appl. Math. 35 (1986) 233-256. | MR 839201 | Zbl 0615.35090
,