Stabilization methods of bubble type for the Q 1 /Q 1 -element applied to the incompressible Navier-Stokes equations
Knobloch, Petr ; Tobiska, Lutz
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000), p. 85-107 / Harvested from Numdam
@article{M2AN_2000__34_1_85_0,
     author = {Knobloch, Petr and Tobiska, Lutz},
     title = {Stabilization methods of bubble type for the $Q\_1/Q\_1$-element applied to the incompressible Navier-Stokes equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {34},
     year = {2000},
     pages = {85-107},
     mrnumber = {1735975},
     zbl = {0984.76047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_2000__34_1_85_0}
}
Knobloch, Petr; Tobiska, Lutz. Stabilization methods of bubble type for the $Q_1/Q_1$-element applied to the incompressible Navier-Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 85-107. http://gdmltest.u-ga.fr/item/M2AN_2000__34_1_85_0/

[1] D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. | MR 799997 | Zbl 0593.76039

[2] C. Baiocchi, F. Brezzi and L.P. Franca, Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Eng. 105 (1993) 125-141. | MR 1222297 | Zbl 0772.76033

[3] R.E. Bank and B.D. Welfert, A comparison between the mini-element and the Petrov-Galerkin formulations for the generalized Stokes problem. Comput. Methods Appl. Mech. Eng. 83 (1990) 61-68. | MR 1078695 | Zbl 0732.65100

[4] M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211-224. | MR 549450 | Zbl 0423.65058

[5] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71-79. | MR 771031 | Zbl 0563.65075

[6] F. Brezzi, M.-O. Bristeau, L.P. Franca, M. Mallet and G. Rogé, A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput. Methods Appl. Mech. Eng. 96 (1992) 117-129. | MR 1159592 | Zbl 0756.76044

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR 1115205 | Zbl 0788.73002

[8] F. Brezzi, L.P. Franca and A. Russo, Further considerations on residual-free bubbles for advective-diffusive equations. Technical Report UCD/CCM 113, Univerity of Colorado at Denver, Center for Computational Mathematics (1997). | MR 1660137 | Zbl 0934.65126

[9] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solutions of Elliptic Systems, W. Hackbusch Ed., Notes on Numerical Fluid Méchantes 10 Vieweg-Verlag Braunschweig (1984) 11-19. | MR 804083 | Zbl 0552.76002

[10] M. Fortin, Old and new finite éléments for incompressible flows. Int. J. Numer. Methods Fluids 1 (1981) 347-364. | MR 633812 | Zbl 0467.76030

[11] L.P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods. Comput. Methods Appl. Mech. Eng. 123 (1995) 299-308. | MR 1339376 | Zbl 1067.76567

[12] L.P. Franca and S.L. Frey, Stabilized finite element methods. II: The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 99 (1992) 209-233. | MR 1186727 | Zbl 0765.76048

[13] L.P. Franca and A. Russo, Approximation of the Stokes problem by residual-free macro bubbles, East-West J. Numer. Math. 4 (1996) 265-278. | MR 1430240 | Zbl 0869.76038

[14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin (1986). | MR 851383 | Zbl 0585.65077

[15] T.J. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics. V: Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59 (1986) 85-99. | MR 868143 | Zbl 0622.76077

[16] P. Knobloch, Reduced finite element discretizations of the Stokes and Navier-Stokes equations. J. Math. Fluid Mechanics (to appear). | MR 2212290 | Zbl 1088.76026

[17] P. Mons and G. Rogé, L'élément Q1-bulle/Q1. Math. Mod. Numer. Anal. 26 (1992) 507-521. | Numdam | MR 1163979 | Zbl 0760.65100

[18] R. Pierre, Simple C0 approximations for the computation of incompressible flows. Comput. Methods Appl. Mech. Eng. 68 (1988) 205-227. | MR 942313 | Zbl 0628.76040

[19] T.C. Rebollo, A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math, 79 (1998) 283-319. | MR 1622522 | Zbl 0910.76033

[20] A. Russo, Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 132 (1996) 335-343. | MR 1399021 | Zbl 0887.76038

[21] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107-127. | MR 1377246 | Zbl 0843.76052

[22] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175-182. | Numdam | MR 743884 | Zbl 0557.76037