@article{M2AN_2000__34_1_139_0, author = {Piperno, Serge}, title = {$L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {34}, year = {2000}, pages = {139-158}, mrnumber = {1735972}, zbl = {0949.65104}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_2000__34_1_139_0} }
Piperno, Serge. $L^2$-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 34 (2000) pp. 139-158. http://gdmltest.u-ga.fr/item/M2AN_2000__34_1_139_0/
[1] Electromagnetics via the Taylor-Galerkin finite element method on unstructured grids. J. Comput. Phys. 110 (1994) 310-319. | Zbl 0795.65088
, , and ,[2] Computational fluid mechanics and heat transfer, Hemisphere, McGraw-Hill, New York (1984). | MR 761171 | Zbl 0569.76001
, and ,[3] Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method. Application to an E.M.I. (electromagnetic impulse) case. Computing Methods in Applied Sciences and Engineering. Nova Science Publishers, Inc., New-York (1991) 405-422.
, and ,[4] Handbook of Numerical Analysis, Vol. 1. North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (1991). | MR 1115235 | Zbl 0689.65001
and Eds.,[5] Approximation des équations de Maxwell par des schémas décentrés en éléments finis. Technical Report RR-1601, INRIA (1992).
, and ,[6] Comparaison de deux méthodes de volumes finis en électromagnétisme. Technical Report RR-3166, INRIA (1997).
and ,[7] A parallel FVTD Maxwell solver using 3D unstructured meshes, in 13th annual review of progress in applied computational electromagnetics, Monterey, California (1997).
, , and ,[8] Aspects récents en méthodes numériques pour les équations de Maxwell, Collection didactique INRIA, INRIA Rocquencourt, France (1998) 23-27.
and Eds.,[9] Étude de schémas d'ordre élevé en volumes finis pour des problèmes hyperboliques. Application aux équations de Maxwell, d'Buler et aux écoulements diphasiques dispersés. Mathématiques appliquées, ENPC, janvier (1997).
,[10] The finite volume method. in Handbook for Numerical Analysis, North Holland-Elsevier Science Publishers, Amsterdam, New York, Oxford (to appear). | MR 1804748 | Zbl 0981.65095
, and ,[11] A class of implicit upwind schemes for euler simulations with unstructured meshes. J. Comput. Phys. 84 (1989) 174-206. | MR 1015358 | Zbl 0677.76062
and ,[12] High Resolution Schemes for Hyperbolic Conservation Laws. J. Comput. Phys. 49 (1983) 357-393. | MR 701178 | Zbl 0565.65050
,[13] On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983) 36-61. | MR 693713 | Zbl 0565.65051
, and ,[14] Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows, in 11th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, July 6-9 (1993), AIAA paper 93-3359.
,[15] Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, Université de Paris VI, France (1975).
,[16] A finite element solver for the Maxwell equations, in GAMNI-SMAI Conference on Numerical Methods for the Maxwell Equations, Paris, France (1989). SIAM, Philadelphia (1991).
and ,[17] A new finite volume scheme for solving Maxwell System. Technical Report RR-3725, INRIA (1999). | Zbl 0994.78021
,[18] Un nouveau schéma de type volumes finis appliqué aux équations de Maxwell en milieu hétérogène. Technical Report RR-3351, INRIA (1998).
, and ,[19] A characteristic-based algorithm for solving 3D, time-domain Maxwell equations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada. January 6-9 (1992), AIAA paper 92-0452.
,[20] A comparative study of characteristic-based algorithms for the Maxwell equations. J. Comput. Phys. 125 (1996) 378-394. | MR 1388152 | Zbl 0848.65087
and ,[21] A time-domain differential solver for electromagnetic scattering problems. Proc. IEEE 77 (1989) 709-720.
, and ,[22] Re-inventing electromagnetics: supercomputing solution of Maxwell's equations via direct time integration on space grids. AIAA paper 92-0333 (1992).
,[23] Numerical analysis of electromagnetic wave scattering and interaction based on frequency-domain integral equation and method of moments techniques. Wave Motion 10 (1988) 493. | MR 972733 | Zbl 0672.73026
,[24] Towards the ultimate conservative difference scheme v: a second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 361-370. | MR 1703646 | Zbl 0276.65055
,[25] Convergence and error estimates in finite volume schemes for general multidimensional scalr conservation laws. I. Explicite monotone schemes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 267-295. | Numdam | MR 1275345 | Zbl 0823.65087
,[26] Convergence de la méthode des volumes finis pour les systèmes de Friedrichs. C.R. Acad. Sci. Paris Sér. I Math. 3(325) (1997) 671-676. | MR 1473844 | Zbl 0888.65107
and ,[27] The modified equation approach to the stability and accuracy analysis of finite-difference methods. J. Comput. Phys. 14 (1974) 159-179. | MR 339526 | Zbl 0291.65023
and ,[28] Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas and Propagation AP-16 (1966) 302-307. | Zbl 1155.78304
,