@article{M2AN_1999__33_6_1091_0,
author = {Bernard, Jean-Marie},
title = {Weak and classical solutions of equations of motion for third grade fluids},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {33},
year = {1999},
pages = {1091-1120},
mrnumber = {1736891},
zbl = {0990.76003},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_1999__33_6_1091_0}
}
Bernard, Jean-Marie. Weak and classical solutions of equations of motion for third grade fluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 1091-1120. http://gdmltest.u-ga.fr/item/M2AN_1999__33_6_1091_0/
[1] , Etude Globale des Fluides de Troisième Grade. Thèse de 3e cycle,Université Pierre et Marie Curie, France (1986).
[2] , , and , Vector potentials in Three-Dimensional Nonsmooth Domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | MR 1626990 | Zbl 0914.35094
[3] and , On a class of fluids of grade 3. Internat. J. Non-linear Mech. 32 (1997) 73-88. | MR 1432717 | Zbl 0887.76007
[4] and , On the Existence of Strong Solutions for Non-Stationary Third-Grade Fluids Preprint, Université Blaise Pascal, Clermont-Ferrand (1996).
[5] and , Weak and classical solutions of a family of second grade fluids. Internat J. Non-linear Mech. 32 (1997) 317-335. | MR 1433927 | Zbl 0891.76005
[6] and , Existence et unicité pour les fluides de second grade. C. R. Acad. Sci. Sér. I 298 (1984) 285-287. | MR 765424 | Zbl 0571.76005
[7] and , Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations, Collège de France Seminar, Pitman, 109 (1984) 178-197. | MR 772241 | Zbl 0577.76012
[8] and , Theory of Ordinary Differential Equations. Mc Graw-Hill, New York (1955). | MR 69338 | Zbl 0064.33002
[9] and , Thermodynamics and stability of fluids of third grade. Proc. Roy. Soc. London Ser. A 339(1980) 351-377. | MR 559220 | Zbl 0441.76002
[10] , and , Existence and uniqueness of classical solutions of the equations of motion for second grade fluids. Arch. Rational Mech. Anal. VIA (1993) 221-237. | MR 1237911 | Zbl 0804.76003
[11] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603
[12] , Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584 | Zbl 1225.35003
[13] and , The Nonlinear Field Theory of Mechanics Handbuch of Physik, Vol. III. Springer-Verlag, Berlin(1975). | Zbl 0779.73004
[14] and , Global existence of classical solutions for the equations of third grade fluids. J. Math. Phys. Sci.29 (1995) 47-69. | MR 1369934 | Zbl 0839.76005
[15] , Navier-Stokes Equations. North-Holland, Amsterdam (1977). | Zbl 0383.35057
[16] , Mathematical analysis of viscoelastic non-Newtonzan fluids Thesis, University of Lisbonne (1997).