Weak and classical solutions of equations of motion for third grade fluids
Bernard, Jean-Marie
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999), p. 1091-1120 / Harvested from Numdam
Publié le : 1999-01-01
@article{M2AN_1999__33_6_1091_0,
     author = {Bernard, Jean-Marie},
     title = {Weak and classical solutions of equations of motion for third grade fluids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {33},
     year = {1999},
     pages = {1091-1120},
     mrnumber = {1736891},
     zbl = {0990.76003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1999__33_6_1091_0}
}
Bernard, Jean-Marie. Weak and classical solutions of equations of motion for third grade fluids. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 1091-1120. http://gdmltest.u-ga.fr/item/M2AN_1999__33_6_1091_0/

[1] C. Amrouche, Etude Globale des Fluides de Troisième Grade. Thèse de 3e cycle,Université Pierre et Marie Curie, France (1986).

[2] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in Three-Dimensional Nonsmooth Domains. Math. Methods Appl. Sci. 21 (1998) 823-864. | MR 1626990 | Zbl 0914.35094

[3] C. Amrouche and D. Cioranescu, On a class of fluids of grade 3. Internat. J. Non-linear Mech. 32 (1997) 73-88. | MR 1432717 | Zbl 0887.76007

[4] D. Bresch and J. Lemome, On the Existence of Strong Solutions for Non-Stationary Third-Grade Fluids Preprint, Université Blaise Pascal, Clermont-Ferrand (1996).

[5] D. Cioranescu and V. Girault, Weak and classical solutions of a family of second grade fluids. Internat J. Non-linear Mech. 32 (1997) 317-335. | MR 1433927 | Zbl 0891.76005

[6] D. Cioranescu and E. H. Ouazar, Existence et unicité pour les fluides de second grade. C. R. Acad. Sci. Sér. I 298 (1984) 285-287. | MR 765424 | Zbl 0571.76005

[7] D. Cioranescu and E. H. Ouazar, Existence and uniqueness for fluids of second grade, in Nonlinear Partial Differential Equations, Collège de France Seminar, Pitman, 109 (1984) 178-197. | MR 772241 | Zbl 0577.76012

[8] E. A. Coddington and N. Levmson, Theory of Ordinary Differential Equations. Mc Graw-Hill, New York (1955). | MR 69338 | Zbl 0064.33002

[9] R. L. Fosdick and K. R. Rajagopal, Thermodynamics and stability of fluids of third grade. Proc. Roy. Soc. London Ser. A 339(1980) 351-377. | MR 559220 | Zbl 0441.76002

[10] G. P. Galdi, M. Grobbelaar-Van Dalsen and N. Sauer, Existence and uniqueness of classical solutions of the equations of motion for second grade fluids. Arch. Rational Mech. Anal. VIA (1993) 221-237. | MR 1237911 | Zbl 0804.76003

[11] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603

[12] J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). | MR 227584 | Zbl 1225.35003

[13] W. Noll and C. Truesdell, The Nonlinear Field Theory of Mechanics Handbuch of Physik, Vol. III. Springer-Verlag, Berlin(1975). | Zbl 0779.73004

[14] A. Sequeira and J. Videman, Global existence of classical solutions for the equations of third grade fluids. J. Math. Phys. Sci.29 (1995) 47-69. | MR 1369934 | Zbl 0839.76005

[15] R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1977). | Zbl 0383.35057

[16] J. H. Videman, Mathematical analysis of viscoelastic non-Newtonzan fluids Thesis, University of Lisbonne (1997).