@article{M2AN_1999__33_5_923_0, author = {B\"ansch, Eberhard and Deckelnick, Klaus}, title = {Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {923-938}, mrnumber = {1726716}, zbl = {0948.76035}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_5_923_0} }
Bänsch, Eberhard; Deckelnick, Klaus. Optimal error estimates for the Stokes and Navier-Stokes equations with slip-boundary condition. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 923-938. http://gdmltest.u-ga.fr/item/M2AN_1999__33_5_923_0/
[1] Local Mesh Refinement in 2 and 3 Dimensions. Impact Comp. Sci. Eng. 3 (1991) 181-191. | MR 1141298 | Zbl 0744.65074
,[2] Numerical treatment of the Navier-Stokes equations with slip-boundary conditions. Preprint 9/ 1998, Universität Freiburg; SIAM J. Sci. Comp. (Submitted). | MR 1762035 | Zbl 0970.76056
and ,[3] An Introduction to Fluid Dynamics. University Press, Cambridge (1970). | MR 1744638 | Zbl 0152.44402
,[4] Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 212-234. | MR 1014883 | Zbl 0678.65003
,[5] Mixed and hybrid finite element methods. Springer, New York (1991). | MR 1115205 | Zbl 0788.73002
and ,[6] Numerical methods for the Navier-Stokes equations. Application to the simulation of compressible and incompressible flows. Comput. Phys. Rep. 6 (1987) 73-188. | MR 913308
, and ,[7] The finite element method for elliptic problems. North-Holland, Amsterdam (1977). | MR 520174 | Zbl 0383.65058
,[8] Nonlinear Functional Analysis. Springer, Berlin (1985). | MR 787404 | Zbl 0559.47040
,[9] Finite element methods for Navier-Stokes equations, Theory and Algorithms. Springer, Berlin (1986). | MR 851383 | Zbl 0585.65077
and ,[10] Thermocapillary free boundaries in crystal growth. J. Fluid Mech. 169 (1986) 1-26. | Zbl 0623.76099
and ,[11] Coating flow theory by finite element and asymptotic analysis of the Navier-Stokes system. Internat. J. Numer. Methods Fluids 4 (1984) 207-229. | Zbl 0555.76026
and ,[12] Variational Crimes in a Finite Element Discretization of 3D Stokes Equations with Nonstandard Boundary Conditions. Preprint MBI-97-4, University of Magdeburg (1997). | MR 1699239 | Zbl 0958.76043
,[13] Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562-580. | MR 842644 | Zbl 0605.65071
,[14] On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. | Numdam | MR 631678 | Zbl 0467.35019
,[15] Die Babuška-Brezzi Bedingung für das Taylor-Hood-Element. Diploma thesis, University of Bonn, Germany (1990).
,[16] Study of Coating Flow by the Finite Element Method. J. Comput. Phys. 42 (1981) 53-76. | Zbl 0466.76035
and ,[17] Surface-Tension-Driven Flow in Crystal Growth Melts, in Crystal Growth, Properties and Applications 11. Springer, Berlin (1988).
,[18] On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math. 125 (1973) 186-199. | MR 350163 | Zbl 0313.35063
and ,[19] A combined conjugate gradient-multigrid algorithm for the numerical solutin of the Stokes problem. IMA J. Numer. Anal. 4 (1984) 441-455. | MR 768638 | Zbl 0563.76028
,[20] Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions. Math. Modelling Numer. Anal. 19 (1985) 461-475. | Numdam | MR 807327 | Zbl 0579.76024
,[21] Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition. Numer. Math. 50 (1987) 697-721. | MR 884296 | Zbl 0596.76031
,[22] Finite element approximation of incompressible Navier-Stokes equations with slip boundary condition II. Numer. Math. 59 (1991) 615-636. | MR 1124131 | Zbl 0739.76034
,