Homogenization of a monotone problem in a domain with oscillating boundary
Blanchard, Dominique ; Carbone, Luciano ; Gaudiello, Antonio
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999), p. 1057-1070 / Harvested from Numdam
Publié le : 1999-01-01
@article{M2AN_1999__33_5_1057_0,
     author = {Blanchard, Dominique and Carbone, Luciano and Gaudiello, Antonio},
     title = {Homogenization of a monotone problem in a domain with oscillating boundary},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {33},
     year = {1999},
     pages = {1057-1070},
     mrnumber = {1726724},
     zbl = {0942.35071},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1999__33_5_1057_0}
}
Blanchard, Dominique; Carbone, Luciano; Gaudiello, Antonio. Homogenization of a monotone problem in a domain with oscillating boundary. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 1057-1070. http://gdmltest.u-ga.fr/item/M2AN_1999__33_5_1057_0/

[1] E. Acerbi and D. Percivale, Homogenization of Noncoercive Punctionals: Periodic Materials with Soft Inclusions. Appl. Math. Optim. 17 (1988) 91-102. | MR 910944 | Zbl 0659.49010

[2] H. Attouch, Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman, London (1984). | MR 773850 | Zbl 0561.49012

[3] N. Bakhvalov and G. Panasenko, Homogenization: Averaging Processes in Periodic Media, in Mathematics and Its Applications, Vol. 36, Kluwer Academie Publishers (1989). | MR 1112788 | Zbl 0692.73012

[4] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978). | MR 503330 | Zbl 0404.35001

[5] R. Brizzi and J.P. Chalot, Homogénéisation de frontière. Doctoral Dissertation, University of Nice (1978).

[6] R. Brizzi and J.P. Chalot, Boundary Homogenization and Neumann Boundary Value Problem. Ric. Mat. 46 (1997) 341-387. | MR 1760382 | Zbl 0959.35014

[7] G. Buttazzo and R.V. Kohn, Reinforcement by a Thin Layer with Oscillating Thickness. Appl. Math. Optim. 16 (1987) 247-261. | MR 901816

[8] A. Corbo Esposito, P. Donato A. Gaudiello and C. Picard, Homogenization of the p-Laplacian in a Domain with Oscillating Boundary, Comm. Appl. Nonlinear Anal, 4 (1997) 1-23. | MR 1485630 | Zbl 0892.35017

[9] V. Chiadò Piat, Convergence of Minima for non Equicoercive Functionals and Related Problems. Ann. Mat. Pura Appl. 157 (1990) 251-283. | MR 1108479 | Zbl 0743.35020

[10] V. Chiadò Piat, G. Dal Masso and A. Defranceschi, G-Convergence of Monotone Operators. Ann. Inst. H. Poincaré 7 (1990) 123-160. | Numdam | MR 1065871 | Zbl 0731.35033

[11] G. Dal Masso, An Introduction to Γ-Convergence. Birkhäuser Boston (1993). | MR 1201152 | Zbl 0816.49001

[12] E. De Giorgio and T. Franzoni, Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101.

[13] A. Dervieux and B. Palmerio, Identification de domaines et problèmes de frontières libres. Thèse de 3e Cycle, University of Nice, France (1974).

[14] P. Donato and G. Moscariello, On the Homogenization of Some Nonlinear Problems in Perforated Domains. Rend. Sem. Mat. Univ. Padova 84 (1990) 91-108. | Numdam | MR 1101285 | Zbl 0755.35040

[15] N. Fusco and G. Moscariello, On the Homogenization of Quasilinear Divergence Structure Operators. Ann. Mat. Pura Appl. 146 (1987) 1-13. | MR 916685 | Zbl 0636.35027

[16] A. Gaudiello, Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary. Ric. Mat. 43 (1994) 239-292. | MR 1324751 | Zbl 0938.35511

[17] J.L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969). | MR 259693 | Zbl 0189.40603

[18] J.L. Lions, Some Aspects of Optimal Control of Distributed Parameter Systems. SIAM Monograph 6 (1972). | MR 479526 | Zbl 0275.49001

[19] F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre. C.R. Acad. Sci. Paris Sér. I 319 (1994) 567-572. | MR 1298284 | Zbl 0808.35037

[20] F. Murat and A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes. C.R. Acad. Sci. Paris Sér. 1320 (1995) 1199-1204. | MR 1336255 | Zbl 0833.35140

[21] F. Murat and J. Simon, Quelques résultats sur le contrôle par un domaine géométrique. Report 74003, Lab. Num. Analysis, University of Paris VI, France (1974).

[22] O. Pironneau, Sur les problèmes d'optimisation de structure en mécanique des fluides. Thèse d'État, University of Paris VI, France (1976).

[23] O. Pironneau and C. Saguez, Asymptotic Behavior, with respect to the Domain, of Solutions of Partial Differential Equations. IRIA-LABORIA, Report 212 (1977).

[24] E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory. Lect. Notes Phys. 127, Springer, Berlin (1980). | MR 578345 | Zbl 0432.70002

[25] L. Tartar, Cours Peccot, Coliège de France (1977). Partially written in F. Murat, H-Convergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn Ed., Progress in Nonlinear Differential Equations and their Applications, Birkhäuser-Verlag (1997) 21-44. | Zbl 0920.35019