@article{M2AN_1999__33_5_1003_0, author = {Dai, Hua}, title = {A numerical method for solving inverse eigenvalue problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {1003-1017}, mrnumber = {1726721}, zbl = {0945.65040}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_5_1003_0} }
Dai, Hua. A numerical method for solving inverse eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 1003-1017. http://gdmltest.u-ga.fr/item/M2AN_1999__33_5_1003_0/
[1] Numerical validation for an inverse matrix eigenvalue problem. Computing 53 (1984) 311-322. | MR 1308769 | Zbl 0813.65076
, and ,[2] Sufficient conditions for the solubility of inverse eigenvalue problems. Linear Algebra Appl. 40 (1981) 89-100. | MR 629609 | Zbl 0473.15006
,[3] A Newton iteration process for inverse eigenvalue problems. Numer. Math. 37 (1981) 349-354. | MR 627109 | Zbl 0458.65023
,[4] Numerical solution of the inverse algebraic eigenvalue problem. Comput. J. 10 (1968) 385-388. | MR 221744 | Zbl 0167.45303
,[5]A sharp version of Kahan's theorem on clustered eigenvalues. Linear Algebra Appl. 245 (1996) 147-156. | MR 1404174 | Zbl 0860.15017
, and ,[6] On the least squares solution of inverse eigenvalue problems. SIAM J. Numer. Anal. 33 (1996) 2417-2430. | MR 1427471 | Zbl 0864.65021
and ,[7] Soiving additive inverse eigenvalue problem for symmetrie matrices by the homotopy method. IMA J.Numer. Anal. 9 (1990) 331-342. | MR 1068196 | Zbl 0703.65024
,[8] On the additive inverse eigenvalue problem. Transaction of Nanjing University of Aeronautics and Astronautics 7 (1990) 108-113. | Zbl 0737.65032
,[9] Sufficient condition for the solubility of an algebraic inverse eigenvalue problem (in Chinese). Math. Numer. Sinica 11 (1989) 333-336. | MR 1037457 | Zbl 0687.15008
,[10] Numerical methods for finding multiple eigenvalues of matrices depending on parameters. Numer. Math. 76 (1997) 189-208. | MR 1440120 | Zbl 0873.65034
and ,[11] Some inverse characteristic value problems. J. Assoc. Comput. Mach. 3 (1956)203-207. | MR 83817
and ,[12] Inverse eigenvalue problems. Linear Algebra Appl. 17 (1977) 15-51. | MR 472861 | Zbl 0358.15007
,[13] The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24 (1987) 634-667. | MR 888754 | Zbl 0622.65030
, and ,[14] Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore, MD (1989). | MR 1002570 | Zbl 0733.65016
and ,[15] Ein inverses Eigenwertproblem. Linear Algebra Appl. 1 (1968) 83-101. | MR 227189 | Zbl 0159.03602
,[16] On an approach to the solution of the inverse eigenvaiue problem. Zap. Naucn. Sem. Leningrad Otdel. Mat. Inst. Steklov. (1970) 138-149. | Zbl 0247.65027
,[17] Sur un problème inverse d'un problème de valeurs propres. C.R. Acad. Sci. Paris. Sér. A-B 268 (1969) 153-156. | MR 241441 | Zbl 0174.47001
,[18] The Theory of Matrices with Applications. Academic Press, New York (1985). | MR 792300 | Zbl 0558.15001
and ,[19] Some sufficient conditions for the solvability of inverse eigenvalue problems. Linear Algebra Appl. 148 (1991) 225-236. | MR 1090762 | Zbl 0725.15006
,[20] Sufficient conditions for the solvability of algebraic inverse eigenvalue problems. Linear Algebra Appl. 221(1995) 117-129. | MR 1331794 | Zbl 0827.15005
,[21] QR decomposition and nonlinear eigenvalue problems (in Chinese). Math. Numer. Sinica 14 (1989) 374-385. | Zbl 0997.65527
,[22] Compute multiply nonlinear eigenvalues. J. Comput. Math. 10 (1992) 1-20. | MR 1159618 | Zbl 0752.65042
,[23] Algorithms for inverse eigenvalue problems. J. Comput. Math. 10 (1992) 97-111. | MR 1159625 | Zbl 0751.65027
,[24] Des algorithmes pour le problème inverse des valeur propres. Linear Algebra Appl. 13 (1976) 251-273. | MR 395187 | Zbl 0353.65021
,[25] Iterative Solution of Nonlinear Equations in Several Variables.. Academic Press New York (1970). | MR 273810 | Zbl 0241.65046
and ,[26] Matrix Perturbation Analysis. Academic Press, New York (1990). | MR 1061154
and ,[27] On the sufficient conditions for the solubility of algebraic inverse eigenvalue problems (in Chinese). Math. Numer. Sinica 9 (1987) 49-59. | MR 893378 | Zbl 0616.15012
,[28] The unsolvability of inverse algebraic eigenvalue problems almost everywhere. J. Comput.Math. 4 (1986) 212-226. | MR 860150 | Zbl 0595.15007
and ,[29] The unsolvability of multiplicative inverse eigenvalues almost everywhere. J. Comput. Math. 4 (1986) 227-244. | MR 860151 | Zbl 0595.15008
,[30] On the necessary conditions for the solvability of algebraic inverse eigenvalue problems. J. Comput. Math. 10 (1992) 93-97. | Zbl 0745.15004
,[31] On the sufficient conditions for the solvability of algebraic inverse eigenvalue problems. J. Comput. Math. 10 (1992) 171-180.
,[32] A class of iterative algorithms for solving inverse eigenvalue problems (in Chinese). Math. Numer. Sinica 9(1987) 144-153. | MR 915302 | Zbl 0633.65037
,[33] The Algebraic Inverse eigenvalue Problem (in Chinese). Henan Science and Technology Press, Zhengzhou, China (1991).
and ,