Motion of spirals by crystalline curvature
Imai, Hitoshi ; Ishimura, Naoyuki ; Ushijima, Takeo
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999), p. 797-806 / Harvested from Numdam
Publié le : 1999-01-01
@article{M2AN_1999__33_4_797_0,
     author = {Imai, Hitoshi and Ishimura, Naoyuki and Ushijima, Takeo},
     title = {Motion of spirals by crystalline curvature},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {33},
     year = {1999},
     pages = {797-806},
     mrnumber = {1726486},
     zbl = {0944.34041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1999__33_4_797_0}
}
Imai, Hitoshi; Ishimura, Naoyuki; Ushijima, Takeo. Motion of spirals by crystalline curvature. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 797-806. http://gdmltest.u-ga.fr/item/M2AN_1999__33_4_797_0/

[1] R. Almgren, Crystalline Saffman-Taylor fingers. SIAM J. Appl. Math. 55 (1995) 1511-1535. | MR 1358787 | Zbl 0838.76094

[2] S. Angenent and M.E. Gurtin, Multiphase thermodynamics with interfacial structure 2. Evolution of an isothermal interface. Arch. Rational Mech. Anal. 108 (1989) 323-391. | MR 1013461 | Zbl 0723.73017

[3] C.M. Elliot, A.R. Gardiner and R. Schätzle, Crystalline curvature flow of a graph in a variational setting. Adv. Math. Sci. Appl. 8 (1998) 425-460. | MR 1623315 | Zbl 0959.35168

[4] T. Fukui and Y. Giga, Motion of a graph by nonsmooth weighted curvature, in World Congress of Nonlinear Analysis '92, Vol. I, V. Lakshmikantham Ed., Walter de Gruyter, Berlin (1996) 47-56. | MR 1389060 | Zbl 0860.35061

[5] M.E. Gage, On the size of the blow-up set for a quasilinear parabolic equation. Contemp. Math. 127 (1992) 41-58. | MR 1155408 | Zbl 0770.35029

[6] M.-H. Giga and Y. Giga, Evolving graphs by singular weighted curvature, Arch. Rational Mech. Anal. 141 (1998) 117-198. | MR 1615520 | Zbl 0896.35069

[7] Y. Giga and M.E. Gurtin, A comparison theorem for crystalline evolution in the plane. Quart. Appl Math. 54 (1996) 727-737. | MR 1417236 | Zbl 0862.35047

[8] Y. Giga, M.E. Gurtin and J. Matias, On the dynamics of crystalline motion. Japan J. Indust, Appl. Math. 15 (1998) 7-50. | MR 1610305

[9] P.M. Girão, Convergence of a crystalline algorithm for the motion of a simple closed convex curve by weighted curvature. SIAM J. Numer. Anal. 32 (1995) 886-899. | MR 1335660 | Zbl 0830.65150

[10] P.M. Girão and R.V. Kohn, Convergence of a crystalline algorithm for the heat equation in one dimension and for the motion of a graph by weighted curvature. Numer. Math. 67 (1994) 41-70. | MR 1258974 | Zbl 0791.65063

[11] M.E. Gurtin, Thermomechanics of evolving phase boundaries in the plane. Oxford, Clarendon Press (1993). | MR 1402243 | Zbl 0787.73004

[12] R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media. Japan J. Indust. Appl. Math. 15 (1998) 317-330. | MR 1629103 | Zbl 0904.92002

[13] K. Ishii and H.M. Soner, Regularity and convergence of crystalline motion. Preprint (1996). | MR 1646732 | Zbl 0963.35082

[14] N. Ishimura, Shape of spiral. Tôhoku Math. J. 50 (1998) 197-202. | MR 1622050 | Zbl 0915.35048

[15] W. Jahnke and A.T. Winfree, A survey of spiral-wave behaviors in the oregonator model. Internat J, Bifur. Chaos 1 (1991). 445-466. | MR 1120210 | Zbl 0900.92066

[16] T. Kuroda, Kessyou ha ikiteiru (Crystal is alive). Science Sya, Tokyo (1984).

[17] A.S. Mikhailov, V.A. Davydov and A.S. Zykov, Complex dynamics of spiral waves and motion of curves. Pkysica D 70 (1994) 1-39. | MR 1257848 | Zbl 0807.58043

[18] A. Ookawa, Kessyou seicyo (Crystal Growth). Syokabo, Tokyo (1977).

[19] A.R. Roosen and J.E. Taylor, Modeling crystal growth in a diffusion field using fully faceted interfaces. J. Comput. Phys. 114 (1994) 113-128. | MR 1286190 | Zbl 0805.65128

[20] P. Rybka, A quasi-steady approximation to an integro-differential model of interface motion. Appl Anal. 56 (1995) 19-34. | MR 1378009 | Zbl 0832.35155

[21] P. Rybka, A crystalline motion: uniqueness and geometric properties. SIAM J. Appl. Math. 57 (1997) 53-72. | MR 1429377 | Zbl 0870.35129

[22] I. Sunagawa, K. Narita, P. Bennema and B. Van Der Hoek, Observation and interpretation of eccentric growth spirals. J. Crystal Growth 42 (1977) 121-126.

[23] J.E. Taylor, Crystalline variational problem. Bull. Amer. Math. Soc. 84 (1978) 568-588. | MR 493671 | Zbl 0392.49022

[24] J.E. Taylor, Constructions and conjectures in crystalline nondifferential geometry, in Differential Geometry (A symposium in honour of Manfredo do Carmo) B, Lawson and K, Tenenblat Eds., Longman, Essex (1991) 321-336. | MR 1173051 | Zbl 0725.53011

[25] J.E. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Proc. Sympos. Pure. Math. 54 (1993) 417-438. | MR 1216599 | Zbl 0823.49028

[26] J.E. Taylor, Surface motion due to crystalline surface energy gradient flows, in Elliptic and Parabolic Methods in Geometry, B. Chow, R. Gulliver, S. Levy, J. Sulliva and A.K. Peters Eds., Massachusetts (1996) 145-162. | MR 1417953 | Zbl 0915.49024

[27] J.J. Tyson and J.P. Keener, Singular perturbation theory of traveling waves in excitable media. Physica D 32 (1988) 327-361. | MR 980194 | Zbl 0656.76018

[28] T. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature v = kα. Preprint (1997). | MR 1740769 | Zbl 0946.65071