@article{M2AN_1999__33_4_695_0, author = {Verf\"urth, R\"udiger}, title = {Error estimates for some quasi-interpolation operators}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {695-713}, mrnumber = {1726480}, zbl = {0938.65125}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_4_695_0} }
Verfürth, Rüdiger. Error estimates for some quasi-interpolation operators. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 695-713. http://gdmltest.u-ga.fr/item/M2AN_1999__33_4_695_0/
[1] Handbook of Mathematical Functions, and Eds., Dover Publ., New York (1965).
[2] Sobolev Spaces. Academic Press, NewYork (1975). | MR 450957 | Zbl 0314.46030
,[3]A posteriori Fehlerabschätzungen für Lösungen gestörter Operatorgleichungen. Habilitationsschrift, Universität Erlangen-Nürnberg (1994).
,[4] Bounds in the Neumann problem for second order uniformly elliptic operators. Pacific J. Math.12 (1962) 823-833. | MR 146504 | Zbl 0111.09701
and ,[5] Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. Report 97-11, Universität Kiel (1997). | Zbl 0973.65091
and ,[6] The Finite Element Method for Elliptic Problems. North Holland (1978). | MR 520174 | Zbl 0383.65058
,[7] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77-84. | Numdam | MR 400739 | Zbl 0368.65008
,[8] On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20 (1983) 985-988. | MR 714693 | Zbl 0523.41020
,[9] An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. | MR 117419 | Zbl 0099.08402
and ,[10] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | MR 1011446 | Zbl 0696.65007
and ,[11] A Review of a posteriori Error Estimation and adaptive Mesh-Refinement Techniques. Teubner-Wiley, Stuttgart (1996). | Zbl 0853.65108
,