@article{M2AN_1999__33_4_651_0, author = {Chambolle, Antonin and Dal Maso, Gianni}, title = {Discrete approximation of the Mumford-Shah functional in dimension two}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {651-672}, mrnumber = {1726478}, zbl = {0943.49011}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_4_651_0} }
Chambolle, Antonin; Dal Maso, Gianni. Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 651-672. http://gdmltest.u-ga.fr/item/M2AN_1999__33_4_651_0/
[1] A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B 3 (1989) 857-881. | MR 1032614 | Zbl 0767.49001
,[2] Variational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989) 1-40. | MR 1029833 | Zbl 0697.49004
,[3] Existence theory for a new class of variational problems. Arch. Rational Mech. Anal. 111 (1990) 291-322. | MR 1068374 | Zbl 0711.49064
,[4] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR 1075076 | Zbl 0722.49020
and ,[5] On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B 6 (1992) 105-123. | MR 1164940 | Zbl 0776.49029
and ,[6] Variational Convergence for Functions and Operators. Pitman, London (1984). | MR 773850 | Zbl 0561.49012
,[7] Discrete approximation of a free discontinuity problem. Numer. Funct. Anal. Optim. 15 (1994) 201-224. | MR 1272202 | Zbl 0806.49002
and ,[8] Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458 (1995) 1-18. | MR 1310950 | Zbl 0817.49015
, and ,[9] Implementation of an adaptive finite-elements approximation of the Mumford-Shah functional. Preprint LPMTM, Université Paris-Nord/CEREMADE, Université de Paris-Dauphine (1998); Numer. Math. (to appear). | MR 1771782 | Zbl 0961.65062
and ,[10] Non-Local Approximation of the Mumford-Shah Functional. Calc. Var. Partial Differential Equations 5 (1997) 293-322. | MR 1450713 | Zbl 0873.49009
and ,[11] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. | MR 1331589 | Zbl 0830.49015
,[12] Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara Sez. VII (N.S.) (to appear). | MR 1686747 | Zbl 0916.49002
,[13] An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
,[14] Un nuovo funzionale del calcolo delie variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199-210. | MR 1152641 | Zbl 0715.49014
and ,[15] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842-850. | MR 448194 | Zbl 0339.49005
and ,[16] An approximation result for the minimizers of Mumford-Shah functional. Boll. Un, Mat. Ital. A 11 (1997) 149-162. | MR 1438364 | Zbl 0873.49008
and ,[17] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR 1158660 | Zbl 0804.28001
and ,[18] Geometric Measure Theory. Springer-Verlag, New York (1969). | MR 257325 | Zbl 0176.00801
,[19] Capacity methods in the theory of partial differential equations. Jahresber. Deutsch. Math.-Verein. 84 (1982) 1-44. | MR 644068 | Zbl 0486.35002
,[20] Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1983). | MR 775682 | Zbl 0545.49018
,[21] Variational Models in Image Segmentation. Birkhäuser, Boston, (1995). | MR 1321598
and ,[22] Boundary detection by minimizing functionals, I, in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco (1985).
and ,[23] Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR 997568 | Zbl 0691.49036
and ,[24] Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). | Zbl 0561.65069
and ,[25] Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | MR 1014685 | Zbl 0692.46022
,