@article{M2AN_1999__33_2_261_0, author = {Chambolle, Antonin}, title = {Finite-differences discretizations of the Mumford-Shah functional}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {261-288}, mrnumber = {1700035}, zbl = {0947.65076}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_2_261_0} }
Chambolle, Antonin. Finite-differences discretizations of the Mumford-Shah functional. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 261-288. http://gdmltest.u-ga.fr/item/M2AN_1999__33_2_261_0/
[1] A compactness theorem for a new class of functions with bounded variation. Boll. Un. Mat. Ital. (7) 3 (1989) 857 881. | MR 1032614 | Zbl 0767.49001
[2] Variational problems in SBV and image segmentation. Acta Appl. Math. 17 (1989) 1-40. | MR 1029833 | Zbl 0697.49004
[3] Existence theory for a new class of vanational problems Arc. Rational Mech. Anal. 111 (1990) 291-322. | MR 1068374 | Zbl 0711.49064
[4] Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR 1075076 | Zbl 0722.49020
and[5] On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. (7) 6 (1992)105-123. | MR 1164940 | Zbl 0776.49029
and[6] Deterministic edge-preserving regularization in computed imaging. Technical report. TR#94-01, I3S, CNRS URA 1376 Sophia-Antipohs, France (1994).
, , and[7] Visual Reconstruction. MIT Press (1987). | MR 919733
and[8] Implementation of a flnite-elements approximation of the Mumford Shah functional Technical report 9844, Ceremade, University of Paris-Dauphine, 1998; preprint LPMTM, University of Paris Nord, 1998, Numer. Math. (to appear). | MR 1771782
and[9] Un théorème de Γ-convergence pour la segmentation des signaux. C. R. Acad. Sci. Paris 314 (1992) 191-196. | MR 1150831 | Zbl 0772.49010
[10] Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55 (1995) 827-863. | MR 1331589 | Zbl 0830.49015
[11] Discrete approximation of the Mumford-Shah functional in dimension two Technical Report. 9820, Ceremade, University of Paris-Dauphine, 1998 preprint SISSA 29/98/M, Trieste RAIRO Model. Math. Anal. Numer.(to appear). | Numdam | MR 1726478 | Zbl 0943.49011
and[12] An introduction to Γ-convergence Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
[13] Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989) 195-218. | MR 1012174 | Zbl 0682.49002
, and[14] Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992). | MR 1158660 | Zbl 0804.28001
and[15] Geometric Measure Theory. Springer Verlag, New York (1969). | MR 257325 | Zbl 0176.00801
[16] Parallel and determmistic algorithms for MRFs: surface reconstruction. IEEE Trans. PAMI 13 (1991) 401-412.
and[17] A common framework for image segmentation. Internat J. Comput. Vision 6 (1991) 227-243.
and[18] Constrained image restoration and the recovery of discontinuities. IEEE Trans. PAMI 3 (1992) 367-383.
and[19] Stochatic relaxation, Gibbs distributions, and the Bayesian restoration of image. IEEE Trans. PAMI 6 (1984). | Zbl 0573.62030
and .[20] Minimal surfaces and functions of bounded variation. Birkhäuser, Boston (1984). | MR 775682 | Zbl 0545.49018
.[21] Finite difference approximation of the Mumford-Shah functional.Comm. Pure Appl. Math. 51 (1998) 197-228. | MR 1488299 | Zbl 0888.49013
.[22] Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577-685. | MR 997568 | Zbl 0691.49036
and .[23] Iterative methods for total variation denoismg, in Procedings of the Colorado Conference on Iterative Methods (1994). | Zbl 0847.65083
and .[24] Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | MR 1014685 | Zbl 0692.46022
.