@article{M2AN_1999__33_1_99_0, author = {Wang, Song}, title = {A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {99-112}, mrnumber = {1685746}, zbl = {0961.82030}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_1_99_0} }
Wang, Song. A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 99-112. http://gdmltest.u-ga.fr/item/M2AN_1999__33_1_99_0/
[1] Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder. Quart. J. Mech. Appl Math. 8 (1955) 129-145. | MR 70367 | Zbl 0064.19802
, ,[2] Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer. Math. 58 (1990) 185-202. | MR 1069278 | Zbl 0713.65066
, , , ,[3] Two-dimensional exponentially fitting and applications to semiconductor device equations. SIAM J. Numer. Anal 26 (1989) 1342-1355. | MR 1025092 | Zbl 0686.65088
, , ,[4] Finite Element Analysis of Semiconductor Devices: The FIELDAY Program. IBM J. Res. Develop. 25, (1981) 218-231.
, , , ,[5] The finite element method for elliptic problems. North-Holland, Amsterdam (1978). | MR 520174 | Zbl 0383.65058
,[6] Hexahedral finite elements for the stationary semiconductor device equations. Comp. Meth. Appl. Mech. Engrg. 84 (1990) 43-57. | MR 1082819 | Zbl 0725.65119
, , , ,[7] A self-consistent iterative scheme for one-dimensional Steady State Transistor Calculation. IEEE Trans. Elec. Dev. 11 (1964) 455-465.
,[8] Inverse-Average-Type Finite Element Discrétisations of Selfadjoint Second-Order Elliptic Problems. Math. Comp. 51 (1988) 431-449. | MR 930223 | Zbl 0699.65074
, ,[9] Discretization of the Semiconductor Device Equations. From New Problems and New Solutions for Device and Process Modelling. J.J.H. Miller Ed. Boole Press, Dublin (1985).
,[10] A Triangular Mixed Finite Element Method for the Stationary Semiconductor Device Equations. RAIRO Modél. Math. Anal. Numér. 25 (1991) 441-463. | Numdam | MR 1108585 | Zbl 0732.65114
and ,[11] An analysis of the Scharfetter-Gummel box method for the stationary semiconductor device equations. RAIRO Modél. Math. Anal. Numér. 28 (1994) 123-140. | Numdam | MR 1267195 | Zbl 0820.65089
and ,[12] A tetrahedral mixed finite element method for the stationary semiconductor continuity equations. SIAM J. Numer. Anal. 31 (1994) 196-216. | MR 1259972 | Zbl 0797.65106
and ,[13] Analysis of a Discretization Algorithm for Stationary Continuity Equations in Semiconductor Device Models. COMPEL 2 (1983) 117-139. | Zbl 0619.65116
,[14] Large-signal analysis of a silicon read diode oscillator. IEEE Trans. Elec. Dev. 16 (1969) 64-77.
and ,[15] Discretization of time-dependent continuity equations. Proceedings of the 6th International NASECODE Conference. J.J.H. Miller Ed. Boole Press, Dublin (1988) 71-83. | MR 1066495 | Zbl 0800.65022
,[16] Iterative Scheme for 1- and 2-Dimensional D.C.-Transistors. IEEE Trans. Elect. Dev. 24 (1977) 1123-1125.
,[17] The physics of semiconductor devices, 2nd ed. John Wiley & Sons, New York (1981).
,[18] Theory of Flow of Electrons and Holes in Germanium and Other Semiconductors. Bell Syst. Tech. J. 29 (1950) 560-607.
,