@article{M2AN_1999__33_1_55_0, author = {Merrien, Jean-Louis}, title = {Interpolants d'Hermite $C^2$ obtenus par subdivision}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {33}, year = {1999}, pages = {55-65}, mrnumber = {1685743}, zbl = {0920.65002}, language = {fr}, url = {http://dml.mathdoc.fr/item/M2AN_1999__33_1_55_0} }
Merrien, Jean-Louis. Interpolants d’Hermite $C^2$ obtenus par subdivision. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 33 (1999) pp. 55-65. http://gdmltest.u-ga.fr/item/M2AN_1999__33_1_55_0/
[1] Bounded Semigroups of Matrices Linear Alg. Appl. 166 (1992) 21-27. | MR 1152485 | Zbl 0818.15006
and ,[2] A survey of curve and surface methods in CAGD. Computer Aided Geometric Design 1 (1984) 1-60. | Zbl 0604.65005
, and ,[3] Set of Matrices All Infinite Products of Which Converge. Linear Alg. Appl. 161 (1992) 227-263. | MR 1142737 | Zbl 0746.15015
and ,[4] Interpolation dyadique In Fractals Dimensions non entieres et applications Éditions Masson, Paris (1987) 44-55. | Zbl 0645.42010
and ,[5] Interpolation through an Iterative Scheme Math. Anal. Appl. 114 (1986) 185-204. | MR 829123 | Zbl 0615.65005
,[6] A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4 (1987) 257-268. | MR 937365 | Zbl 0638.65009
, and ,[7] Analysis of Hermite-type subdivision schemes. Approximation Theory VIII.: Wavelets and Multilevel Approximation C. K. Chui and L. L. Schumaker Eds. World Scientific, Singapore (1995) 117-124. | MR 1471778 | Zbl 0927.65034
, ,[8] Uber stetige Functionen Math. Ann. 66 (1909) 81-94. | JFM 39.0455.02
,[9] A family of Hermite interpolants by bisection algorithm. Numerical Algorithms 2 (1992) 187-200. | MR 1165905 | Zbl 0754.65011
,[10] Mathematical Aspects of Geometric Modeling. SIAM, Philadelphia (1995). | MR 1308048 | Zbl 0864.65008
,