@article{M2AN_1998__32_7_817_0,
author = {Verf\"urth, R.},
title = {A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
volume = {32},
year = {1998},
pages = {817-842},
mrnumber = {1654436},
zbl = {0920.65064},
language = {en},
url = {http://dml.mathdoc.fr/item/M2AN_1998__32_7_817_0}
}
Verfürth, R. A posteriori error estimates for nonlinear problems. $L^r$-estimates for finite element discretizations of elliptic equations. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 32 (1998) pp. 817-842. http://gdmltest.u-ga.fr/item/M2AN_1998__32_7_817_0/
[1] , Sobolev Spaces. Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030
[2] and , Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736-754 (1978). | MR 483395 | Zbl 0398.65069
[3] and , A posteriori error estimates for the finite element method. Int. J. Numer. Methods in Engrg. 12, 1597-1615 (1978). | Zbl 0396.65068
[4] and , A posteriori error estimation for nonlinear problems by dual techniques. Preprint, Universität Freiburg, 1995.
[5] , and , Analyse numérique d'indicateurs d'erreur. Preprint R 93025, Université Paris VI, 1993.
[6] , The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, 1978. | MR 520174 | Zbl 0383.65058
[7] , Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9, 77-84 (1975). | Numdam | MR 400739 | Zbl 0368.65008
[8] , Elliptic Boundary Value Problems on Corner Domains. Springer, Lecture Notes in Mathematics 1341, Berlin, 1988. | MR 961439 | Zbl 0668.35001
[9] , An adaptive finite element method with efficient maximum norm error control for elliptic problems. Math. Models and Math. in Appl. Sci. 4, 313-329 (1994). | MR 1282238 | Zbl 0806.65106
[10] and , An adaptive finite element method for linear elliptic problems. Math. Comput. 50, 361-383 (1988). | MR 929542 | Zbl 0644.65080
[11] and , Adaptive finite element methods for parabolic problems I. A linear model problem. SIAM J. Numer. Anal. 28, 43-77 (1991). | MR 1083324 | Zbl 0732.65093
[12] and , Adaptive finite element methods for parabolic problems IV. Nonlinear problems. Chalmers University of Göteborg, Preprint 1992, 44 (1992). | MR 1360457 | Zbl 0835.65116
[13] and , Finite Element Approximation of the Navier-Stokes Equations. Computational Methods in Physics, Springer, Berlin, 2nd édition, 1986. | MR 548867 | Zbl 0413.65081
[14] , Elliptic Problems in Nonsmooth Domains. Pitman, Boston, 1985. | MR 775683 | Zbl 0695.35060
[15] and , Adaptive finite element methods in computational mechanics. Comp. Math. Appl. Mech. Engrg. 101, 143-181 (1992). | MR 1195583 | Zbl 0778.73071
[16] , Pointwise a posteriori error estimates for elliptic problems on highly graded meshes. Math. Comput. 64, 1-22 (1995). | MR 1270622 | Zbl 0920.65063
[17] and , Consistency, stability, a priori, and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69, 213-231 (1994). | MR 1310318 | Zbl 0822.65034
[18] , A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. (206), 445-475 (1994). | MR 1213837 | Zbl 0799.65112
[19] , A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic problems. Bericht Nr. 180, Ruhr-Universität Bochum, 1995. | Zbl 0869.65067
[20] , A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner Series in advances in numerical mathematics, Stuttgart, 1996. | Zbl 0853.65108