@article{M2AN_1998__32_7_789_0, author = {Gibel, P.}, title = {\'Etude num\'erique des oscillations des syst\`emes semi-lin\'eaires $3 x 3$}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {32}, year = {1998}, pages = {789-815}, mrnumber = {1654440}, zbl = {0924.65091}, language = {fr}, url = {http://dml.mathdoc.fr/item/M2AN_1998__32_7_789_0} }
Gibel, P. Étude numérique des oscillations des systèmes semi-linéaires $3 x 3$. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 32 (1998) pp. 789-815. http://gdmltest.u-ga.fr/item/M2AN_1998__32_7_789_0/
[1] Geometrie der Gewebe, Springer-Verlag, 1937. | JFM 64.0727.03 | Zbl 0020.06701
, ,[2] Particle method approximation of oscillatory solutions to hyperbolic differential equations, SIAM, J. Numer. Anal., 1989, 289-319. | MR 987391 | Zbl 0675.65093
, ,[3] Non linear high frequency hyperbolic waves, Collection Nonlinear hyperbolic equations and field theory, 1990, 121-143. | Zbl 0824.35077
, ,[4] High frequency semi-linear oscillations, in Wave motion, Theory, Modelling and Computation, Springer Verlag, 1986, 202-216. | MR 920836 | Zbl 0703.35103
, ,[5] Resonant one dimensionnal nonlinear geometric optics, J. Funct. Anal. 114, 1993, 106-231. | MR 1220985 | Zbl 0851.35023
, , ,[6] Coherent and focusing multidimensional nonlinear geometric optics, Preprint. | MR 1305424
, , ,[7] Generic rigorous asymptotic expansions for weakly non-linear multidimensional oscillatory waves, Duke Math. J. 70, 1993, 373-404. | MR 1219817 | Zbl 0815.35066
, , ,[8] Resonantly interacting weakly non linear hyperbolic waves 1 : a single space variable, Stud. Appl. Math. 71, 1987. | Zbl 0572.76066
, ,[9] A canonical System of integrodifferential equations arising in resonant nonlinear acoustics, Stud. Appl. Math. 79, 1988, 263-270. | Zbl 0669.76103
, , ,[10] Linear and non linear waves, Wiley, 1974. | Zbl 0373.76001
,[11] Étude numérique d'indes oscillantes non linéaires, Thèse Université Bordeaux I.
,