@article{M2AN_1998__32_6_773_0, author = {Mazure, Marie-Laurence and Laurent, Pierre-Jean}, title = {Nested sequences of Chebyshev spaces and shape parameters}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {32}, year = {1998}, pages = {773-788}, mrnumber = {1652613}, zbl = {0922.65010}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1998__32_6_773_0} }
Mazure, Marie-Laurence; Laurent, Pierre-Jean. Nested sequences of Chebyshev spaces and shape parameters. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 32 (1998) pp. 773-788. http://gdmltest.u-ga.fr/item/M2AN_1998__32_6_773_0/
[1] de Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, Constructive Approximation 12 (1996), 385-408. | MR 1405005 | Zbl 0854.41010
,[2] Identities for piecewise polynomial spaces determined by connection matrices, Aequationes Mathematicae 42 (1991), 123-136. | MR 1125625 | Zbl 0769.41007
, , and ,[3] A new approach to Tchebycheffian B-splines, in Curves and Surfaces with Applications to CAGD, Vanderbilt University Press (1997), 35-42. | MR 1659765 | Zbl 0938.65020
and ,[4] On locally supported basis functions for the representation of geometrically continuous curves, Analysis 7 (1987), 313-341. | MR 928645 | Zbl 0633.41005
, and ,[5] Recurrence relations for Tchebycheffian B-splines, Journal d'Analyse Mathématique 51 (1988), 118-138. | MR 963152 | Zbl 0675.41021
and ,[6] Total Positivity, Stanford University Press, Stanford, 1968. | MR 230102 | Zbl 0219.47030
,[7] Tchebycheff Systems, Wiley Interscience, New York, 1966. | MR 204922 | Zbl 0153.38902
and ,[8] Chebyshevian spline functions, SIAM Journal Numerical Analysis 3 (1966), 514-543. | MR 216206 | Zbl 0171.31002
and ,[9] Q-splines, Numerical Algorithms 1 (1991), 45-74. | MR 1135287 | Zbl 0797.65003
and ,[10] Non affine blossoms and subdivision for Q-splines, in Math. Methods in Computer Aided Geometric Design II, Academic Press, New York, 1992, 367-380. | MR 1172817
, and ,[11] Chebyshev splines and shape parameters, RR 980M IMAG, Université Joseph Fourier, Grenoble, September 1997, Numerical Algorithms 15 (1997), 373-383. | MR 1605676 | Zbl 0891.65013
, and ,[12] Shape effects with polynomial Chebyshev splines, in Curves and Surfaces with Applications in CAGD, Vanderbilt University Press, 1997, 255-262. | MR 1659752 | Zbl 0938.65019
, and ,[13] A recurrence relation for Chebyshevian B-splines, Constructive Approximation 1 (1985), 155-173. | MR 891537 | Zbl 0583.41011
,[14] Blossoming of Chebyshev splines, In Mathematical Methods for Curves and Surfaces, Vanderbilt University Press, 1995, 355-364. | MR 1356981 | Zbl 0835.65033
,[15] Chebyshev spaces, RR 952M IMAG, Université Joseph Fourier, Grenoble, January 1996.
,[16] Chebyshev blossoming, RR 953M IMAG, Université Joseph Fourier, Grenoble, January 1996.
,[17] Blossoming: a geometric approach, RR 968M IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Constructive Approximation. | MR 1660085 | Zbl 0924.65010
,[18] Vandermonde type determinants and blossoming, The Fourth International Conference on Mathematical Methods for Curves and Surfaces, Lillehammer, Norway, July 3-8, 1997, RR 979M IMAG, Université Joseph Fourier, Grenoble, September 1997, Advances in Computational Math. 8 (1998), 291-315. | MR 1637609 | Zbl 0906.65014
,[19] Affine and non affine blossoms, in Computational Geometry, World Scientific, 1993, 201-230. | MR 1339313
and ,[20] Marsden identities, blossoming and de Boor-Fix formula, in Advanced Topics in Multivariate Approximation, World Scientific Pub., 1996, 227-242. | MR 1661413 | Zbl pre05254921
and ,[21] Piecewise smooth spaces in duality: application to blossoming, RR696-M, IMAG, Université Joseph Fourier, Grenoble, January 1997, to appear in Journal of Approximation Theory. | MR 1692244 | Zbl 0952.41010
and ,[22] Polynomial Chebyshev Splines, to appear. | MR 1688408 | Zbl 0916.68152
and ,[23] Tchebycheff curves, in Total Positivity and its Applications, Kluwer Academic Pub. (1996), 187-218. | MR 1421603 | Zbl 0902.41018
and ,[24] Mathematical Aspects of Geometric Modeling, CBMS-NSF Regional Conference Series in Applied Math. 65, SIAM, Philadelphie, 1995. | MR 1308048 | Zbl 0864.65008
,[25] The geometry of Tchebycheffian splines, Computer Aided Geometric Design 10 (1993), 181-210. | MR 1235152 | Zbl 0777.41016
,[26] Helix splines as an example of affine Tchebycheffian splines, Advances in Computational Math. 2 (1994), 123-142. | MR 1266027 | Zbl 0832.65008
and ,[27] Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323-358. | MR 1030618 | Zbl 0705.65008
,[28] Spline Functions: Basic Theory, Wiley Interscience, New York, 1981. | MR 606200 | Zbl 0449.41004
,[29] New algorithms and techniques for Computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling and Numerical Analysis 26 (1992), 149-176. | Numdam | MR 1155005 | Zbl 0752.65008
,[30] Symmetric Tchebycheffian B-splines schemes, in Curves and Surfaces in Geometric Design, A. K. Peters, Wellesley, MA, 1994, 483-490. | MR 1302230 | Zbl 0814.65008
and ,