An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance
Campbell, Alain ; Nazarov, Sergueï
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 32 (1998), p. 579-610 / Harvested from Numdam
Publié le : 1998-01-01
@article{M2AN_1998__32_5_579_0,
     author = {Campbell, Alain and Nazarov, Sergue\"\i },
     title = {An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique},
     volume = {32},
     year = {1998},
     pages = {579-610},
     mrnumber = {1643481},
     zbl = {0905.73029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/M2AN_1998__32_5_579_0}
}
Campbell, Alain; Nazarov, Sergueï. An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 32 (1998) pp. 579-610. http://gdmltest.u-ga.fr/item/M2AN_1998__32_5_579_0/

[1] A. Campbell and S. Nazarov, Comportement d'une plaque élastique dont une petite région est rigide et animée d'un mouvement vibratoire. Étude asymptotique de la matrice d'impédance. Annales de la Faculté des Sciences de Toulouse, IV, 1995, n°2, p 211-242. | Numdam | MR 1344721 | Zbl 0834.73041

[2] A. Campbell and S. Nazarov, Une justification de la méthode de raccordement de développements asymptotiques appliquée à un problème de plaque. Journal de Mathématiques Pure et Appliquées, 1996, Série 9. Tome 76, n° 1, pp 15-54, 1997. | MR 1429996 | Zbl 0877.35125

[3] I. C. Gohberg and M. G. Krejn, Opérateurs linéaires non auto-adjoints dans un espace hilbertien, Dunod, Paris, 1971. | MR 350445

[4] A. M. Ilyin, Matching of asymptotic expansions of solutions of boundary value problem (in russian), Nauka, Moscou, 1989, translated in english in Amer. Math. Soc., Providence, 1992. | MR 1007834 | Zbl 0671.35002

[5] V. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points (in russian), Trady Moskov. Mat. Obshch. 16, 1967, p. 209-212, translated in enghsh in Trans. Moskov. Math. Soc., 16, 1967. | MR 226187 | Zbl 0194.13405

[6] D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity, Paris, New-York, Masson-Wiley, 1987. | MR 995254 | Zbl 0647.73010

[7] V. Mazya, S. Nazarov and B. Plamenevski, On the asymptotic behaviour of solutions of elliptic boundary value problems with irregular perturbations of the domain (in russian), Problemy Mat. Anal. 8. Izdat. Leningrad. Gos. Univ., Leningrad, 1981, p. 72-153. | MR 658154 | Zbl 0491.35013

[8] V. Marya, S. Nazarov and B. Plamenevski, Asymptotishe theorie elliptischer randwertaufgaben in singulär gestörten gebieten. Bd. 1 & 2,Berlin, Academie-Verlag, 1990-91.

[9] S. Nazarov and B. Plamenevski, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter, Berlin, 1994. | MR 1283387 | Zbl 0806.35001

[10] J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and coupling of continuons Systems, Springer, Berlin, 1989. | MR 996423 | Zbl 0698.70003

[11] M. D. Van Dyke, Perturbations methods in fluid mechanics, Academic Press, New-York, 1964. | MR 176702 | Zbl 0136.45001