@article{M2AN_1998__32_4_501_0, author = {Chen, Zhangxin}, title = {Expanded mixed finite element methods for quasilinear second order elliptic problems, II}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Mod\'elisation Math\'ematique et Analyse Num\'erique}, volume = {32}, year = {1998}, pages = {501-520}, mrnumber = {1637069}, zbl = {0910.65080}, language = {en}, url = {http://dml.mathdoc.fr/item/M2AN_1998__32_4_501_0} }
Chen, Zhangxin. Expanded mixed finite element methods for quasilinear second order elliptic problems, II. ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique, Tome 32 (1998) pp. 501-520. http://gdmltest.u-ga.fr/item/M2AN_1998__32_4_501_0/
[1] Sobolev Spaces, Academic Press, New York, 1975. | MR 450957 | Zbl 0314.46030
,[2] Mixed finite éléments for second order ellipticproblems in three variables, Numer. Math. 51 (1987), 237-250. | MR 890035 | Zbl 0631.65107
, , and ,[3] Efficient rectangular mixed finite elements in two and three space variables, RAIRO Modèl. Math. Anal. Numér. 21 (1987), 581-604. | Numdam | MR 921828 | Zbl 0689.65065
, , and ,[4] Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), 217-235. | MR 799685 | Zbl 0599.65072
, , and ,[5] Expanded mixed finite element methods for linear second order elliptic problems I, IMA Preprint Series # 1219, 1994, RAIRO Modèl. Math. Anal. Numér., in press. | Numdam | MR 1636376 | Zbl 0910.65079
,[6] On the existence, uniqueness and convergence of nonlinear mixed finite element methods, Mat. Aplic. Comput.8 (1989), 241-258. | MR 1067288 | Zbl 0709.65080
,[7] BDM mixed methods for a nonlinear elliptic problem, J. Comp. Appl. Math. 53 (1994), 207-223. | MR 1306126 | Zbl 0819.65129
,[8] Prismatic mixed finite elements for second order elliptic problems, Calcolo 26 (1989),135-148. | MR 1083050 | Zbl 0711.65089
and ,[9] A Galerkin method for a nonlinear Dirichlet problem, Math. Comp. 29 (1975), 689-696. | MR 431747 | Zbl 0306.65072
, and ,[10] Global estimates for mixed methods for second order elliptic problems, Math. Comp. 45 (1985), 39-52. | MR 771029 | Zbl 0624.65109
, and ,[11] A new family of mixed finite element spaces over rectangles, Mat. Aplic. Comput. 12 1993, 183-197. | MR 1288240 | Zbl 0806.65109
and ,[12] Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, vol. 224, Springer-Verlag, Berlin, 1977. | MR 473443 | Zbl 0361.35003
and ,[13] Non-Homogeneous Boundary Value Problems and Apllications, Vol. I, Slinger-Verlag, Berlin, 1970. | Zbl 0223.35039
and ,[14] Mixed finite element methods for quasilinear second order elliptic problems, Math. Comp. 44 (1982), 303-320. | MR 777266 | Zbl 0567.65079
,[15] Mixed finite elements in R3, Numer. Math. 35 (1980), 315-341. | MR 592160 | Zbl 0419.65069
,[16] A new family of mixed finite elements in R3, Numer. Math. 50 (1986), 57-81. | MR 864305 | Zbl 0625.65107
,[17] A mixed finite element method for second order elliptic problems, Lecture Notes in Math. 606, Springer, Berlin, 1977, pp. 292-315. | MR 483555 | Zbl 0362.65089
and ,[18] Postprocessing schemes for some mixed finite elements, RAIRO Modèl. Math. Anal. Numér. 25 (1991), 151-167. | Numdam | MR 1086845 | Zbl 0717.65081
,